




July 10, 2020

—Via Electronic Filing—

Will Seuffert Executive Secretary Minnesota Public Utilities Commission 121 7<sup>th</sup> Place East, Suite 350 St. Paul, MN 55101

RE: RESPONSE IN OPPOSITION TO AFCL'S MOTION FOR

Order to Show Cause and Hearing Freeborn Wind Energy Project Docket No. IP-6946/WS-17-410

Dear Mr. Seuffert:

Northern States Power Company, doing business as Xcel Energy, submits this Response in Opposition to the June 26, 2020 Motion for Order to Show Cause and Hearing filed by the Association of Freeborn County Landowners (AFCL).

As an initial matter, we note that AFCL is correct; the Company will be moving 17 turbines originally planned to be built in Freeborn County to Worth County, Iowa. Included with this Response as Attachment A is an Amended Site Plan reflecting the layout of the portion of the project the Company will be constructing in Minnesota. This was not the Company's preferred course for the Freeborn Wind Energy project. In order to ensure the project is constructed efficiently and at the lowest cost for our customers, and able to obtain the full value of applicable wind production tax credits (PTCs), however, we believe this shift is necessary and prudent.

We do not believe this decision requires a permit amendment—at least not at this time. The Site Permit "authorize[s]" the Company "to construct and operate an *up to* 84 megawatt nameplate capacity Large Wind Energy Conversion System in Freeborn County, Minnesota," (emphasis added) subject to compliance with the conditions of the permit. We still intend to construct a large wind project in Freeborn County that will have no more than 84 megawatts of nameplate capacity, and we still intend to comply with the conditions of the permit. Moving these 17 turbines to Iowa (and removing them from the Site Plan) will have no impact on the rest of the permitted project, and, therefore, AFCL's motion seeking an amended Site Permit should be denied.

#### A. Background

As noted in the Pre-Construction Meeting Notes, filed in this Docket on May 15, 2020, the Company has had difficulties obtaining agreements with the Townships of Oakland and London for the use of township roads to construct certain turbines we originally had planned to include in the project. These difficulties began with the original developer of the project, Freeborn Wind Energy LLC, who applied for a site permit for the Freeborn Wind Energy Project on June 14, 2017. Among other things, the Site Permit Application noted that the developer would need to obtain "oversize/overweight permits for township roads."

Not coincidentally, shortly thereafter in 2017, London and Oakland townships adopted ordinances requiring environmental review, pursuant to the Minnesota Environmental Policy Act, Minn. Stat. § 116D.01, et seq., in connection with the issuance of any oversize/overweight permit (the Ordinances). Under these substantively identical Ordinances, the township boards are designated as the "Responsible Governmental Units" for conducting the environmental review, and any violation of the Ordinances is subject to punishment by "a fine not exceeding \$500 or imprisonment for 90 days or both."

As Freeborn Wind Energy LLC pursued approval of, and amendments to, the Site Permit, it also pursued related approvals from other governmental units, including London and Oakland townships. Although Freeborn Wind Energy LLC believed the Ordinances were preempted by Minn. Stat. 216F.07, and did not apply to the project, it attempted to negotiate for road use agreements with the townships, and even sought a permit from the townships, sending all the environmental information included in the Site Permit Application for the townships' review. Despite these good faith attempts, the townships largely refused to engage in discussions and refused to consider the application for an oversize/overweight permit.

In contrast to this obstructive behavior from London and Oakland townships, Freeborn Wind Energy LLC (and subsequently the Company) entered into an extensive Development Agreement with Freeborn County, as well as Hayward and Shell Rock townships. We filed this Development Agreement with the Commission on March 11, 2020, pursuant to Section 5.2.12 of the Site Permit. Among other things, the Development Agreement includes detailed provisions regarding the use, repair, and restoration of the county and those townships' roads.

<sup>1</sup> The London Township Town Board filed a copy of its Ordinance in this Docket on October 9, 2017.

2

When the Company acquired the Freeborn Wind Energy project, we reached out to London and Oakland townships in May and June 2019, and attempted to discuss obtaining a similar agreement on use of township roads, including oversize/overweight vehicle use of the roads. In a letter filed in this Docket on July 22, 2019, however, the townships' attorney accused the Company and Freeborn Wind Energy LLC of "harassment," and stated the Company was required to "abide by" the townships' Ordinances to obtain an oversize/overweight permit, notwithstanding Freeborn Wind Energy LLC's prior attempt to do just that.

Given the tenor of this and other communications, we did not believe we could work constructively to obtain necessary permits or agreements with the townships until after the Company's Site Permit amendment application was approved. Following the Commission's vote on December 19, 2019, to amend the Site Permit, the Company again reached out to the townships in January 2020 to discuss obtaining access point, crossing, and oversize/overweight permits. The townships refused to meet in person to discuss the permits, but requested additional information from the Company, which we supplied. Since providing the requested information at the end of February 2020, however, we have not heard from the townships or their attorney regarding the road use permits. Although we remained hopeful that they would reengage in discussions, including up until the time of our pre-construction meeting with the Department of Commerce—Energy Environmental Review & Analysis division (DOC-EERA) and Commission, it has become clear we will not be able to reach an arrangement regarding road use in time to pursue construction of 17 turbines originally planned to be located in the townships.

Based on the townships' overall reticence regarding road-use discussions, in parallel with our attempts to obtain permits or agreements, we developed an alternate plan to develop the full nameplate capacity of the Freeborn Wind Energy project as economically as possible. Specifically, we obtained options for alternate turbine locations in Worth County, Iowa—where the majority of the project already was slated to be constructed. As we developed this backup plan, over the past few months, we notified DOC-EERA of the alternative, even though we continued to hope we would not need it. Unfortunately, by the end of June, due to the lack of engagement from the townships, we were forced to switch to our alternate plans, and on June 24, 2020, the Company reached out to DOC-EERA, Commission staff, and Freeborn County officials to inform them of our decision. On June 29, 2020, we reached out to affected landowners to discuss the same with them.

In our discussions with DOC-EERA and Commission staff, we agreed that, at this time, the appropriate procedural approach to documenting this change in plans was through a revised Site Plan, which we provide as Attachment A, rather than a Site Permit Amendment.

## B. Moving Turbines to Iowa Provides Certainty and Best Preserves Benefits for Our Customers

As noted above, moving the 17 turbines in question to Iowa is not the Company's preferred course of action, but given the circumstances, it is the best path forward for the Company and our customers. Going this direction facilitates the Company securing 100% of the value of the PTCs for the project; it allows the project to be constructed efficiently; it aligns with the conditions of the Site Permit; and it moves turbines from a community that was antagonistic to the project to one that is receptive to the project. For all these reasons, we ultimately determined this shift was in the best interest of all parties.

One of the aspects of the Freeborn Wind Energy project that makes it particularly valuable for customers is that, because work on the project began before 2017, it qualifies for 100% PTCs, the value of which the Company will flow back to customers through the Renewable Energy Standard Rider. The current value of PTCs is 2.5 cents per kWh of energy produced by a wind farm during its first ten years of operation. Until just over one month ago, in order to qualify under the continuity safe harbor to secure 100% of this PTC value, the project needed to be placed into service by December 31, 2020. Missing this deadline could have extreme consequences, potentially including the loss of 20% of the PTCs. For a 200 MW wind farm, like the Freeborn Wind Energy project, that could amount to over \$40,000,000 in lost PTCs.

On May 27, 2020, the IRS issued Notice 2020-41, extending the deadline by one year to address supply chain issues related to the COVID-19 pandemic.<sup>2</sup> Although this extension gives the Company some ability to extend construction into 2021, work on the Freeborn Wind Energy project was planned to occur in 2020 well before the extension was contemplated or even the impacts of COVID-19 were realized. The BOP contractor, Wanzek, began civil construction on the project in April 2020, and delaying any portion of that work for a substantial period of time would add notable cost increases to the project. For example, the contractor would be unable to construct foundations and collection lines for those turbines and would need to delay work and return at an uncertain date. This uncertainty with the schedule

\_

<sup>&</sup>lt;sup>2</sup> https://www.irs.gov/pub/irs-drop/n-20-41.pdf

would expose the project to additional costs for labor efficiency losses, and it also is possible that the contractor could not guarantee labor resources would return in time to support schedule to meet even the extended PTC deadlines. To compound this issue, there likely would be significant cost impacts and additional schedule uncertainty related to crane resources needed to erect the turbines, which could not be used as efficiently as if the entire facility were constructed at the same time. Cranes needed to construct these turbines would need to walk past the turbine locations and then be broken down to reach other portions of the project, resulting in additional labor, time, and uncertainty in crane availability.

Based on these timing and scheduling pressures, even though we do not believe the townships' positions are reasonable, fighting with them over road use permits added too much scheduling uncertainty. Similarly, based on the townships' prior actions, attempting to comply with the Ordinances at best would have added substantial delay to the project. As a result, we chose the only option that provided us with certainty as to our ability to meet the 100% PTC deadline and efficiently construct the entire project: moving the 17 turbines in question to Iowa.

In addition to these benefits, this shift in turbine locations moves them from communities that are openly antagonistic to the project to one that is enthusiastic about it. Wind turbines are a permitted use in Worth County's Agricultural District. Furthermore, we were met with support from both Worth County landowners and the Board of Supervisors upon presentation of the alternate site layout. We believe, therefore, that this move is in the best interest of our customers.

## C. Removing Turbines from the Site Plan Does Not Require a Site Permit Amendment

Although we appreciate that this shift in turbine locations is a significant change in the project, we do not believe it requires an amendment to the Site Permit at this time. We have complied, and intend to continue complying, with all terms of the Site Permit as they relate to the remaining turbines we intend to construct in Minnesota. The only difference is that 17 turbines originally planned to be built in Minnesota no longer will be located in the state. As a result, there is no need to amend the Site Permit, which is—as its name implies—a permit authorizing (not an injunction requiring) the construction of up to 84 MW of wind generation.

To the contrary, this shift in turbine locations is consistent with the Site Permit. Section 5.2.12 of the Site Permit requires the Company to "make satisfactory arrangements with the appropriate state, county, or township governmental body

having jurisdiction over roads to be used for construction of the project, for maintenance and repair of roads that may be subject to increased impacts due to transportation of equipment and project components" prior to using such roads. Section 5.5.2 of the Site Permit requires the Company to "obtain all required permits for the project and comply with the conditions of those permits unless those permits conflict with or are preempted by federal or state permits and regulations" and notes that a "list of the permits known to be required is included in the permit application." Section 11.1-1 of the Site Permit Application, submitted on June 14, 2017, identifies the following "known or potentially required permits and approvals for the Project" to be obtained from London and Oakland townships: ROW permits, crossing permits, driveway permits for access roads, oversize/overweight permits for township roads." Absent satisfactory arrangements with the townships, construction of the 17 turbines was not authorized by the Site Permit.

Additionally, the shift in turbine locations to Iowa is consistent with Section 3.1 of the Site Permit, which states that "[a]ny modification to the location of a wind turbine and associated facility depicted in the preliminary layout shall be done in such a manner to have comparable overall human and environmental impacts and shall be specifically identified in the site plan pursuant to Section 10.3." Because the shift in turbines only removes previously approved turbines from their locations in Minnesota and does not change anything else related to the planned and permitted construction in Minnesota, it effectively minimizes any such impacts. There is, moreover, no need to resubmit "all the information required in an application" under "Minn. R. 7854.0500" for those turbines left in Minnesota because such information would be redundant of what already is in the record.

Once construction of the project is completed, it may be appropriate to amend or modify the Site Permit to reflect the contours of the constructed project. Such a modification would be appropriate under Minn. R. 7854.1300, subp. 1, which states "[o]nce construction of an LWECS is completed, the permittee shall advise the commission of the completion of the project and the commission shall amend the site permit to specifically define the area authorized for the LWECS..." and Section 12.1 of the Site Permit, which allows site boundaries to be modified following completion of construction, "to represent the actual site required by the Permittee to operate the Project authorized by this permit." At this time, however, an amendment is unnecessary, and we therefore request that AFCL's motion be denied.

We have electronically filed this document with the Minnesota Public Utilities Commission, and copies have been served on the parties on the attached service list. Please contact me at (612) 330-6064 or <a href="mailto:bria.e.shea@xcelenergy.com">bria.e.shea@xcelenergy.com</a>, or Jennifer

Roesler at (612) 330-1925 or jennifer.roesler@xcelenergy.com, if you have any questions regarding this filing.

Sincerely,

/s/

Bria Shea Director, Regulatory and Strategic Analysis

c: Service List

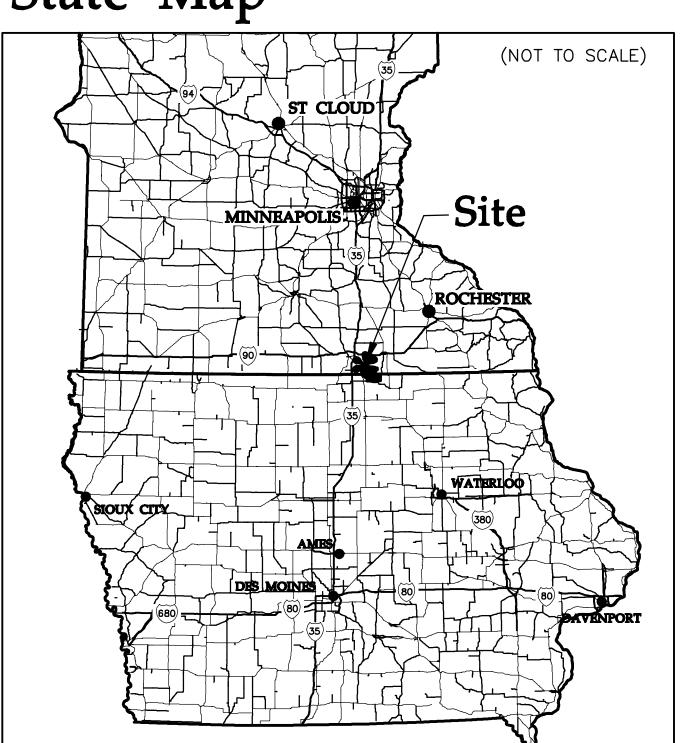
Docket No. IP-6946/WS-17-410 Response to AFCL's Motion Attachment A

## Attachment A

Amended Site Plan

## Civil

# Construction Plans

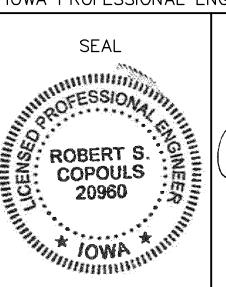

## Wind Turbines, Access Roads, Drainage, and Erosion Control

Vicinity Map

## Freeborn Wind Farm

Freeborn County, Minnesota & Worth County, Iowa

State Map




| HAYWAR         |                                               | -(90)                                      |
|----------------|-----------------------------------------------|--------------------------------------------|
|                |                                               | , l                                        |
| Site —         |                                               |                                            |
| 35) SILE \     |                                               |                                            |
|                | MYRTLE                                        |                                            |
| GLENVILLE      | WIKILL                                        | <u> </u>                                   |
| (65)           | <b>X</b> //////////////////////////////////// | ATAORES OUNTY                              |
|                | KON D                                         | ATINIOS NEWOM<br>FREEBORN COUNTY<br>S<br>S |
| MINNESOTA      |                                               | MO                                         |
| IOWA           |                                               | GOOS HERROW                                |
| 65             |                                               | THELL (                                    |
| (05)           |                                               | MITCH                                      |
|                |                                               |                                            |
| NORTHWOOD      |                                               |                                            |
| (NOT TO SCALE) |                                               |                                            |

Sheet Number | Sheet Title NH-276086-1 NH-276086-2-1 Turbine Coordinates NH-276086-2-2 Culvert Schedule NH-276086-4-1 |Delivery Flow Plan - MN NH-276086-4-2 Delivery Flow Plan - IA NH-276086-5-1 |Construction Details NH-276086-5-2 |Construction Details NH-276086-5-3 Construction Details NH-276086-7-2 Construction Notes NH-276086-8-1 | Site Plan T-8 T-9 NH-276086-8-3 | Site Plan T-11 T-12 NH-276086-8-4 | Site Plan T-6 NH-276086-8-5 | Site Plan T-7 T-13 T-14 NH-276086-8-6 | Site Plan NH-276086-8-7 | Site Plan T-18 NH-276086-8-8 | Site Plan T-19 NH-276086-8-9 | Site Plan T-20 T-21 NH-276086-8-10 Site Plan T-22 NH-276086-8-11 Site Plan T-23 NH-276086-8-12 Site Plan T-24 NH-276086-8-14 Site Plan T-26 T-27 NH-276086-8-15 Site Plan NH-276086-8-16 Site Plan NH-276086-8-17 Site Plan NH-276086-8-18 Site Plan T-37 NH-276086-8-19 Site Plan T-38 T-39 NH-276086-8-20 Site Plan T-45 T-46 NH-276086-8-21 Site Plan T-48 NH-276086-9-1 |Site Plan T-100 - T-102 NH-276086-9-2 |Site Plan T-103 - T-105 NH-276086-9-11 Site Plan T-122 T-123 T-133 T-134 NH-276086-9-14|Site Plan T-125 T-140 - T-142 NH-276086-9-16 Site Plan T-126 T-146 T-147 T-162 T-163 NH-276086-9-17 Site Plan T-198 - T-201 NH-276086-9-18 Site Plan T-152 T-186 T-187 NH-276086-9-19 Site Plan T-153 T-188 T-191 NH-276086-9-20|Site Plan T-154 - T-156 NH-276086-9-21 | Site Plan T-157 NH-276086-9-22 Site Plan T-158 T-159 NH-276086-9-23 Site Plan T-160 T-161 Alt-172 Alt-192 NH-276086-9-24|Site Plan T-193 NH-276086-9-25 Site Plan T-196 - T-197 NH-276086-9-26|Site Plan T-169 T-170 T-179 T-180 T-189 T-190 NH-276086-9-27|Site Plan T-181 - T-183 NH-276086-9-28 Site Plan T-194 - T-195 NH-276086-11-1 | O&M Yard Site Plan NH-276086-11-2 | O&M Yard Grading Plan

Sheet List Table

IOWA PROFESSIONAL ENGINEER SEAL:



DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF IOWA

LICENSE NUMBER: 20960 MY LICENSE RENEWAL DATE IS DECEMBER 31, 2021 SHEETS COVERED BY THIS SEAL: 1, 2-1, 2-2, 3-2, 4-2, 5-1, 5-2, 5-3, 5-4, 6, 7-1, 7-2, 9-1

MINNESOTA PROFESSIONAL ENGINEER SEAL:

SEE TITLE BLOCK FOR SIGNATURE AND SEAL. ALL SHEETS APPLICABLE TO MINNESOTA HAVE BEEN SEALED.

ROBERT S. COPOULS

| DATA SET INFORMATION   |                                                     |                             |             |  |  |  |  |
|------------------------|-----------------------------------------------------|-----------------------------|-------------|--|--|--|--|
| BASE FILE              | FILE NAME / NOTES                                   | PROVIDER                    | DATE        |  |  |  |  |
| AERIAL IMAGE           | AERIAL-MNComplmgry-GM.jp2                           | Minnesota Composite Imagery | 11/3/2017   |  |  |  |  |
|                        | Freeborn_Neighbor_Agreements.shp                    |                             |             |  |  |  |  |
| LAND CONTROL           | Freeborn_Participating_Wind_Leases.shp              | Wanzek                      | 4/1/2020    |  |  |  |  |
|                        | Freeborn_Transmission_Agreements.shp                |                             |             |  |  |  |  |
| ALTA SURVEY            | V_BNDY_Minnesota_70315.dwg                          | Wanzek                      | 7/18/2019   |  |  |  |  |
|                        | V_BNDY_IOWA_70315                                   | vvanzek                     |             |  |  |  |  |
| TOPOGRAPHY             | MKP_MNTOPO_IA_LIDAR_dot5_50ft.txt                   | MNTOPO / IA LIDAR           | 7/18/2019   |  |  |  |  |
| TURBINE ARRAY          | L083 Final Array (2020-03-26).xlsx                  | Wanzek                      | 3/30/2020   |  |  |  |  |
| UNDERGROUND COLLECTION | Freeborn Collection Shp File_Minnesota.shp Freeborn | Wanzek                      | 4/10/2020   |  |  |  |  |
| ONDERGROOND COLLECTION | Collection Shp File_Iowa.shp                        | vvanzer                     | 4/ 10/ 2020 |  |  |  |  |
| STREAMS/WETLANDS       | Freeborn_Waterbodies_2018_2019.shp                  | Wanzek/Xcel Energy          | 12/0/2010   |  |  |  |  |
| STREAIVIS/ WETLAINDS   | Freeborn_Wetlands_2018_2019.shp                     | vvanzek/ Acer Energy        | 12/9/2019   |  |  |  |  |
| TRANSMISSION LINE      | FREEBORN_TRANSMISSION LINE.shp                      | Wanzek                      | 4/10/2020   |  |  |  |  |

APVD:

(952) 937-5822 Minnetonka, MN 55343 (888) 937-5150 westwo

|                                             | DATE | BY | CHK | ENG | KE      | FERENCE DRAV | VINGS       | I hereby certify that this plan was prepared by me or under my direct supervision and that I |
|---------------------------------------------|------|----|-----|-----|---------|--------------|-------------|----------------------------------------------------------------------------------------------|
| A 90% CIVIL PLANS L083 04/17/20 TDD DJN DJN |      |    |     |     | DWG NO. | MANUFACTURER | DESCRIPTION | am a duly licensed PROFESSIONAL ENGINEER                                                     |
| 0 IFC CIVIL PLANS L083 05/04/20 TDD DJN DJN |      |    |     |     |         |              |             | under the laws of the State of Minnesota.                                                    |
|                                             |      |    |     |     |         |              |             | Daville J. Mygn                                                                              |
|                                             |      |    |     |     |         |              |             | Printed Name  Date: 05/04/20 License No. 55542                                               |

|        |          |                       |                      |            |                                                  | Trestrood i tolessiolidi Settices, ilic. |
|--------|----------|-----------------------|----------------------|------------|--------------------------------------------------|------------------------------------------|
| ,<br>R |          | <b>O</b> Xcel         | Energy               | <b>,</b> ® | UNIT 0                                           |                                          |
|        |          | NORTHERN STATES       | POWER COMPA          | NY         | PROVIDED FOR BY USING                            | CIVIL ACCESS ROADS                       |
|        |          | FREEBORN V            | VIND FARI            | М          | SAFETY PRACTICES, PROCEDURES. AND EQUIPMENT      |                                          |
|        |          | Freeborn County, MN a | and Worth County, IA |            | AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND | OOVED OUEET/DDAMING INDEV                |
| -      | DWN: TDD | DATE:                 | CHK:                 | DATE:      | MANUALS.                                         | COVER SHEET/DRAWING INDEX                |
| -      | ENG: DJN | DATE:                 | CHK:                 | DATE:      | ENIEDOV OLIDDI V                                 |                                          |
| _      | PM: DJN  | DATE:                 | PROJ. NO:            | 22586      | ENERGY SUPPLY                                    | NH-276086-1                              |
|        |          |                       |                      |            | ¬ ENGINEERING & ( ()NSTRH( )H()N                 |                                          |

SCALE: NONE

**ENGINEERING & CONSTRUCTION** 

## TURBINE COORDINATES

| Freeborn Wind Project - Minnesota |              |              |             |                  |             |  |  |  |
|-----------------------------------|--------------|--------------|-------------|------------------|-------------|--|--|--|
| Turbine                           | Turbine Type | WG           | S84         | Freebo           | rnMN-F      |  |  |  |
| Number                            | Tarbine Type | Longitude    | Latitude    | Easting Northing |             |  |  |  |
| T-6                               | V120-STE     | -93.19815203 | 43.62821679 | 699083.8076      | 147641.6654 |  |  |  |
| T-7                               | V120-STE     | -93.18453198 | 43.62723905 | 702693.4839      | 147318.2397 |  |  |  |
| T-8                               | V120         | -93.16461615 | 43.63483885 | 707940.7467      | 150137.827  |  |  |  |
| T-9                               | V120         | -93.15817436 | 43.63473359 | 709646.6116      | 150115.6718 |  |  |  |
| T-11                              | V120-STE     | -93.12552854 | 43.63929874 | 718273.2174      | 151863.9668 |  |  |  |
| T-12                              | V120         | -93.11816937 | 43.63925049 | 720221.6189      | 151865.8279 |  |  |  |
| T-13                              | V120         | -93.18073471 | 43.61957570 | 703724.8645      | 144534.0753 |  |  |  |
| T-14                              | V120-STE     | -93.17627629 | 43.62010390 | 704903.7583      | 144737.6    |  |  |  |
| T-18                              | V110-STE     | -93.19192815 | 43.60261863 | 700817.0704      | 138325.5597 |  |  |  |
| T-19                              | V120-STE     | -93.19451205 | 43.59696308 | 700151.3768      | 136257.747  |  |  |  |
| T-20                              | V120         | -93.20331802 | 43.56671734 | 697917.7149      | 125211.4192 |  |  |  |
| T-21                              | V120-STE     | -93.19862950 | 43.56813924 | 699155.739       | 125740.9511 |  |  |  |
| T-22                              | V110-STE     | -93.25468562 | 43.54736157 | 684361.5372      | 118037.4837 |  |  |  |
| T-23                              | V110-STE     | -93.24627045 | 43.54584956 | 686597.4296      | 117505.1387 |  |  |  |
| T-24                              | V110         | -93.20732644 | 43.55480659 | 696894.1291      | 120860.1734 |  |  |  |
| T-25                              | V120         | -93.24152201 | 43.53461142 | 687891.4593      | 113419.3256 |  |  |  |
| T-26                              | V120-STE     | -93.22390163 | 43.53071603 | 692576.7719      | 112039.7861 |  |  |  |
| T-27                              | V120         | -93.21632313 | 43.53075844 | 694586.5611      | 112072.9309 |  |  |  |
| T-37                              | V120-STE     | -93.18696334 | 43.51882628 | 702413.1881      | 107793.6921 |  |  |  |
| T-38                              | V120-STE     | -93.16249503 | 43.51841174 | 708905.2182      | 107703.2479 |  |  |  |
| T-39                              | V120-STE     | -93.15659822 | 43.51951867 | 710465.5858      | 108121.6465 |  |  |  |
| T-45                              | V120         | -93.18690600 | 43.50116744 | 702487.6132      | 101356.8901 |  |  |  |
| T-46                              | V120         | -93.18334371 | 43.50531518 | 703418.8692      | 102877.5254 |  |  |  |
| T-48                              | V120-STE     | -93.16360301 | 43.50763366 | 708648.5523      | 103771.6772 |  |  |  |

| Turbine<br>Number         Turbine Number         Turbine Longitude         Lalitude         Easting         Northing           T-100         V120-STE         -93.17847072         43.49196765         7046853929         98023.45849           T-101         V120-STE         -93.17846107         43.49405929         706079.3858         98798.96458           T-102         V120-STE         -93.15812417         43.49405929         706079.3858         9889848.59893           T-103         V120-STE         -93.15812417         43.49408990         701149.2938         98848.59893           T-104         V120         -93.15322828         43.49570034         711428.3781         99447.92927           T-105         V120         -93.13539883         43.49349490         711428.3781         99447.92927           T-106         V120         -93.13539883         43.49346791         716182.2644         98675.53127           T-107         V120         -93.10755837         43.49389815         723568.7906         98910.8874           T-109         V120         -93.10719488         43.4948590         72566.2244         99140.38914           T-110         V120         -93.00291491         43.49356657         729138.3534         984840.0756           T-1                                                                                                        | Freeborn Wind Project - Iowa |              |              |             |             |             |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--------------|-------------|-------------|-------------|--|--|--|--|
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turbine                      | Turbine Type | WG           | S84         | Freebo      | rnMN-F      |  |  |  |  |
| T-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |              | Longitude    | Latitude    | Easting     | Northing    |  |  |  |  |
| T-102         V120-STE         -93.16941247         43.49552388         707148.7573         99342.91308           T-103         V120-STE         -93.15812417         43.49408990         710149.2938         98445.59893           T-104         V120         -93.15328298         43.49570034         711428.3781         99447.92927           T-105         V120         -93.14263786         43.49339290         714261.42         98633.14444           T-106         V120         -93.13539883         43.49345491         716182.2644         98675.53127           T-107         V120         -93.10755837         43.49345491         716182.2644         98675.53127           T-108         V120         -93.10791488         43.49436713         721540.7397         99061.35162           T-109         V120         -93.10191488         43.49486590         725064.2284         99140.38914           T-110         V120         -93.09291491         43.49346679         727456.2741         98848.00757           T-111         V120         -93.06672727         43.49236640         732653.3342         988497.65749           T-111         V120         -93.03338028         43.49428575         736870.9121         99191.2999           T-116         V12                                                                                                                   | T-100                        | V120-STE     | -93.17874072 |             | 704685.3929 | 98023.45849 |  |  |  |  |
| T-103         V120-STE         -93.15812417         43.49408990         710149.2938         98848.59893           T-104         V120         -93.15328298         43.49570034         711428.3781         99447.92927           T-105         V120         -93.135328898         43.49339290         714261.42         98634.14444           T-106         V120         -93.13539883         43.49345491         716182.2644         98675.53127           T-107         V120         -93.1055837         43.49346713         721540.7397         99061.35162           T-108         V120         -93.10755837         43.49389815         723668.7906         98910.88741           T-109         V120         -93.10191488         43.4948590         725064.2284         99140.33851           T-110         V120         -93.09291491         43.49436697         727456.2741         98804.39357           T-111         V120         -93.08657536         43.49356857         729138.3534         98489.0756           T-111         V120         -93.0734536         43.49250640         732653.3342         98497.65749           T-111         V120         -93.05742632         43.4942507373         734410.1277         98469.38657           T-111         V120 <td>T-101</td> <td>V120-STE</td> <td>-93.17346107</td> <td>43.49405929</td> <td>706079.3858</td> <td>98798.96458</td> | T-101                        | V120-STE     | -93.17346107 | 43.49405929 | 706079.3858 | 98798.96458 |  |  |  |  |
| T-104         V120         -93.15328298         43.49570034         711428.3781         99447.92927           T-105         V120         -93.15328298         43.49339290         714261.42         98634.14444           T-106         V120         -93.1553983         43.49345491         716182.2644         98675.5312           T-107         V120         -93.10755837         43.49346713         721540.7397         99061.35162           T-108         V120         -93.10155837         43.49346713         721540.7397         99061.35162           T-109         V120         -93.10151488         43.4948590         725064.2284         99140.38914           T-110         V120         -93.07334536         43.49366877         727456.2741         98804.39357           T-111         V120         -93.07334536         43.49250640         732653.3342         98497.65749           T-113         V120         -93.06672727         43.4923773         734410.1277         98469.38654           T-114         V120         -93.03338028         43.49428575         736870.9121         99191.2999           T-116         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-117         V120                                                                                                                               | T-102                        | V120-STE     | -93.16941247 | 43.49552388 | 707148.7573 | 99342.91308 |  |  |  |  |
| T-105         V120         -93.14263786         43.49339290         714261.42         98634.14444           T-106         V120         -93.13539883         43.49345491         716182.2644         98675.53127           T-107         V120         -93.10755837         43.49436713         721540.7397         99061.35162           T-108         V120         -93.10755837         43.49389815         723568.7906         98910.88741           T-109         V120         -93.109291491         43.49349679         727456.2741         98804.39357           T-110         V120         -93.08657536         43.49356857         729138.3534         98840.765749           T-111         V120         -93.06672727         43.49250640         732653.3342         98497.65749           T-113         V120         -93.06672727         43.49250773         734410.1277         98469.365749           T-114         V120         -93.06672727         43.49250773         734410.1277         98469.36554657           T-111         V120         -93.05742632         43.49250773         734410.1277         98469.3655.54658           T-114         V120         -93.04217956         43.49392916         740918.3537         99105.22509           T-117                                                                                                                            | T-103                        | V120-STE     | -93.15812417 | 43.49408990 | 710149.2938 | 98848.59893 |  |  |  |  |
| T-106         V120         -93.13539883         43.49345491         716182.2644         98675.53127           T-107         V120         -93.11519415         43.49436713         721540.7397         99061.35162           T-108         V120         -93.10755837         43.49389815         723568.7906         98910.88741           T-109         V120         -93.0191488         43.4948590         725064.2284         99140.38914           T-110         V120         -93.09291491         43.49349679         727456.2741         98804.39357           T-111         V120         -93.0657536         43.49356857         729138.3534         98848.00756           T-112         V120         -93.06677272         43.49237773         734410.1277         98469.3654           T-113         V120         -93.06672727         43.4923773         734410.1277         98469.3654           T-114         V120         -93.06672727         43.492575         736870.9121         99191.2999           T-114         V120         -93.04217956         43.493392916         740918.3537         99191.2999           T-116         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-117         V120                                                                                                                                 | T-104                        | V120         | -93.15328298 | 43.49570034 | 711428.3781 | 99447.92927 |  |  |  |  |
| T-107         V120         -93.11519415         43.49436713         721540.7397         99061.35162           T-108         V120         -93.10755837         43.49389815         723568.7906         98910.88741           T-109         V120         -93.10191488         43.4948590         725064.2284         99140.38914           T-110         V120         -93.09291491         43.49349679         727456.2741         98804.39357           T-111         V120         -93.08657536         43.49356857         729138.3534         98848.00756           T-112         V120         -93.06672727         43.49250640         732653.3342         98497.65749           T-113         V120         -93.056742632         43.4928757         736870.9121         99119.2999           T-114         V120         -93.04217956         43.49329716         740918.3537         99105.22509           T-116         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.18197057         43.48455192         701165.4641         95557.1652           T-120         V120         -93.1879057         43.48422531         710026.6994         95251.31086           T-121         V120                                                                                                                            | T-105                        | V120         | -93.14263786 | 43.49339290 | 714261.42   | 98634.14444 |  |  |  |  |
| T-108         V120         -93.10755837         43.49389815         723568.7906         98910.88741           T-109         V120         -93.10191488         43.49448590         725064.2284         99140.38914           T-110         V120         -93.09291491         43.49349679         727456.2741         98804.39357           T-111         V120         -93.0855736         43.49356857         729138.3534         98489.0756           T-112         V120         -93.07334536         43.49250640         732653.3342         98497.65749           T-113         V120         -93.06672727         43.49237773         734410.1277         98469.38654           T-114         V120         -93.05742632         43.49323773         734810.1277         98469.38654           T-114         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-117         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.18197057         43.48529128         701165.4641         95557.1652           T-120         V120         -93.18597053         43.48452531         70026.6994         95251.31086           T-121         V120                                                                                                                            | T-106                        | V120         | -93.13539883 | 43.49345491 | 716182.2644 | 98675.53127 |  |  |  |  |
| T-109         V120         -93.10191488         43.49448590         725064.2284         99140.38914           T-110         V120         -93.09291491         43.49349679         727456.2741         98804.39357           T-111         V120         -93.08657536         43.49356857         729138.3534         98848.00756           T-112         V120         -93.06672727         43.49250640         732653.3342         98497.65749           T-113         V120         -93.06672727         43.49237773         734410.1277         98469.38654           T-114         V120         -93.05742632         43.49428575         736870.9121         991912.2999           T-116         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.18197057         43.48452912         701165.4641         95557.1652           T-120         V120         -93.18197057         43.48452912         701853.2704         95112.35361           T-121         V120         -93.16725103         43.48475511         707759.3716         95422.93855           T-122         V120         -93.15871539         43.4842503         715284.0918         95520.71644           T-123         V120                                                                                                                          | T-107                        | V120         | -93.11519415 | 43.49436713 | 721540.7397 | 99061.35162 |  |  |  |  |
| T-110         V120         -93.09291491         43.49349679         727456.2741         98804.39357           T-111         V120         -93.08657536         43.49356857         729138.3534         98484.00756           T-112         V120         -93.07334536         43.49250640         732653.3342         98497.65749           T-113         V120         -93.0672727         43.49237773         734410.1277         98496.38654           T-114         V120         -93.0672725         43.49328715         736870.9121         99191.2999           T-116         V120         -93.04217956         43.49329216         740918.3537         99105.22509           T-117         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-121         V120         -93.15871539         43.48455192         703853.2704         95312.35861           T-121         V120         -93.15871539         43.4842531         710026.6994         95251.31086           T-123         V120         -93.16848569         43.4842531         710026.6994         95250.71644           T-125         V120                                                                                                                             | T-108                        | V120         | -93.10755837 | 43.49389815 | 723568.7906 | 98910.88741 |  |  |  |  |
| T-111         V120         -93.08657536         43.49356857         729138.3534         98848.00756           T-112         V120         -93.07334536         43.49250640         732653.3342         98497.65749           T-113         V120         -93.0677272         43.49237773         734410.1277         98469.38654           T-114         V120         -93.05742632         43.49237773         734410.1277         99191.2999           T-116         V120         -93.04217956         43.49317373         743256.4658         98855.54009           T-117         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.18197057         43.4845192         703853.2704         95312.35361           T-120         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-121         V120         -93.1575103         43.48475511         707759.3716         95422.93855           T-122         V120         -93.158871539         43.4842531         710026.6994         95251.31086           T-123         V120         -93.13889926         43.4862516         728352.8994         96170.08994           T-125         V120                                                                                                                             | T-109                        | V120         | -93.10191488 | 43.49448590 | 725064.2284 | 99140.38914 |  |  |  |  |
| T-112         V120         -93.07334536         43.49250640         732653.3342         98497.65749           T-113         V120         -93.06672727         43.49237773         734410.1277         98469.38654           T-114         V120         -93.06672727         43.49237773         734410.1277         98469.38654           T-116         V120         -93.04217956         43.4932916         740918.3537         99105.22509           T-117         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-120         V120         -93.16725103         43.48455192         703853.2704         95312.35361           T-121         V120         -93.15871539         43.48475511         707759.3716         95422.93855           T-122         V120         -93.15871539         43.4842531         710026.6994         95251.31086           T-123         V120         -93.13889926         43.4842531         710026.6994         95251.31086           T-124         V120         -93.13889926         43.48482503         715284.0918         95520.71644           T-125         V120                                                                                                                           | T-110                        | V120         | -93.09291491 | 43.49349679 | 727456.2741 | 98804.39357 |  |  |  |  |
| T-113         V120         -93.06672727         43.49237773         734410.1277         98469.38654           T-114         V120         -93.05742632         43.49428575         736870.9121         99191.2999           T-116         V120         -93.04217956         43.49392916         740918.3537         99105.22509           T-117         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.18197057         43.4855192         703853.2704         95517.1652           T-120         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-121         V120         -93.15871539         43.48455117         707759.3716         95422.93855           T-122         V120         -93.15871539         43.48422531         710026.6994         95251.31086           T-123         V120         -93.15889926         43.48482503         715284.0918         95520.71644           T-124         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.03728569         43.48960853         739731.5214         96091.03786           T-132         V120                                                                                                                           | T-111                        | V120         | -93.08657536 | 43.49356857 | 729138.3534 | 98848.00756 |  |  |  |  |
| T-114         V120         -93.05742632         43.49428575         736870.9121         99191.2999           T-116         V120         -93.04217956         43.49392916         740918.3537         99105.22509           T-117         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.19208805         43.48529128         701165.4641         95557.1652           T-120         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-121         V120         -93.16725103         43.48475511         707759.3716         95422.93855           T-122         V120         -93.15871539         43.48422531         710026.6994         95251.31086           T-123         V120         -93.15848569         43.48594120         711143.3352         95887.51601           T-124         V120         -93.13889926         43.48482503         715284.0918         95520.71644           T-125         V120         -93.04677505         43.48569653         739731.5214         96091.03786           T-127         V120         -93.1538994         43.47848975         708694.8782         93147.76555           T-133         V120                                                                                                                           | T-112                        | V120         | -93.07334536 | 43.49250640 | 732653.3342 | 98497.65749 |  |  |  |  |
| T-116         V120         -93.04217956         43.49392916         740918.3537         99105.22509           T-117         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.19208805         43.48529128         701165.4641         95557.1652           T-120         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-121         V120         -93.15871539         43.48475511         707759.3716         95422.93855           T-122         V120         -93.15848569         43.48594120         711143.3352         95887.51601           T-124         V120         -93.15848569         43.4862503         715284.0918         95520.71644           T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.13375211         43.4770841         714067.2165         91824.74782           T-135         V120                                                                                                                           | T-113                        | V120         | -93.06672727 | 43.49237773 | 734410.1277 | 98469.38654 |  |  |  |  |
| T-117         V120         -93.03338028         43.49317373         743256.4658         98855.54009           T-119         V120         -93.19208805         43.48529128         701165.4641         95557.1652           T-120         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-121         V120         -93.16725103         43.48475511         707759.3716         95422.93855           T-122         V120         -93.15871539         43.48422531         710026.6994         95251.31086           T-123         V120         -93.15448569         43.48594120         711143.3352         95887.51601           T-124         V120         -93.13889926         43.48422531         710026.6994         95251.31086           T-124         V120         -93.13889926         43.48594120         711143.3352         95887.51601           T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.0728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120                                                                                                                          | T-114                        | V120         | -93.05742632 | 43.49428575 | 736870.9121 | 99191.2999  |  |  |  |  |
| T-119         V120         -93.19208805         43.48529128         701165.4641         95557.1652           T-120         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-121         V120         -93.16725103         43.48475511         707759.3716         95422.93855           T-122         V120         -93.15871539         43.48422531         710026.6994         95251.31086           T-123         V120         -93.15448569         43.48594120         711143.3352         95887.51601           T-124         V120         -93.13889926         43.48482503         715284.0918         95520.71644           T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.4775180         711505.1866         92091.89021           T-134         V120         -93.13375211         43.47740841         714467.2165         91824.74782           T-135         V120                                                                                                                          | T-116                        | V120         | -93.04217956 | 43.49392916 | 740918.3537 | 99105.22509 |  |  |  |  |
| T-120         V120         -93.18197057         43.48455192         703853.2704         95312.35361           T-121         V120         -93.16725103         43.48475511         707759.3716         95422.93855           T-122         V120         -93.15871539         43.48422531         710026.6994         95251.31086           T-123         V120         -93.15448569         43.48594120         711143.3352         95887.51601           T-124         V120         -93.13889926         43.48482503         715284.0918         95520.71644           T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.04677505         43.48596653         739731.5214         96091.03786           T-127         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47740841         714467.2165         91824.74782           T-134         V120         -93.13375211         43.47740841         714467.2165         91824.74782           T-135         V120                                                                                                                        | T-117                        | V120         | -93.03338028 | 43.49317373 | 743256.4658 | 98855.54009 |  |  |  |  |
| T-121         V120         -93.16725103         43.48475511         707759.3716         95422.93855           T-122         V120         -93.15871539         43.48422531         710026.6994         95251.31086           T-123         V120         -93.15448569         43.48594120         711143.3352         95887.51601           T-124         V120         -93.13889926         43.48482503         715284.0918         95520.71644           T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.04677505         43.48569653         739731.5214         96091.03786           T-127         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.13375211         43.47740841         714467.2165         91824.74782           T-135         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-138         V120                                                                                                                        | T-119                        | V120         | -93.19208805 | 43.48529128 | 701165.4641 | 95557.1652  |  |  |  |  |
| T-122         V120         -93.15871539         43.48422531         710026.6994         95251.31086           T-123         V120         -93.15448569         43.48594120         711143.3352         95887.51601           T-124         V120         -93.13889926         43.48482503         715284.0918         95520.71644           T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.04677505         43.48569653         739731.5214         96091.03786           T-127         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47740841         714467.2165         91824.74782           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120                                                                                                                        | T-120                        | V120         | -93.18197057 | 43.48455192 | 703853.2704 | 95312.35361 |  |  |  |  |
| T-123         V120         -93.15448569         43.48594120         711143.3352         95887.51601           T-124         V120         -93.13889926         43.48482503         715284.0918         95520.71644           T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.04677505         43.48569653         739731.5214         96091.03786           T-127         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.477480011         719703.6805         91909.79708           T-137         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-140         V120 <td>T-121</td> <td>V120</td> <td>-93.16725103</td> <td>43.48475511</td> <td>707759.3716</td> <td>95422.93855</td>     | T-121                        | V120         | -93.16725103 | 43.48475511 | 707759.3716 | 95422.93855 |  |  |  |  |
| T-124         V120         -93.13889926         43.48482503         715284.0918         95520.71644           T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.04677505         43.48569653         739731.5214         96091.03786           T-127         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-140         V120                                                                                                                         | T-122                        | V120         | -93.15871539 | 43.48422531 | 710026.6994 | 95251.31086 |  |  |  |  |
| T-125         V120         -93.08963950         43.48624516         728352.8994         96170.08994           T-126         V120         -93.04677505         43.48569653         739731.5214         96091.03786           T-127         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-138         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120                                                                                                                         | T-123                        | V120         | -93.15448569 | 43.48594120 | 711143.3352 | 95887.51601 |  |  |  |  |
| T-126         V120         -93.04677505         43.48569653         739731.5214         96091.03786           T-127         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11670452         43.47603307         721207.0651         92374.32181           T-138         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.09903980         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.4817783         725876.5765         94333.70134           T-141         V120                                                                                                                         | T-124                        | V120         | -93.13889926 | 43.48482503 | 715284.0918 | 95520.71644 |  |  |  |  |
| T-127         V120         -93.03728569         43.48908060         742236.4873         97352.12929           T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11670452         43.47603307         721207.0651         92374.32181           T-138         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.0680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120                                                                                                                          | T-125                        | V120         | -93.08963950 | 43.48624516 | 728352.8994 | 96170.08994 |  |  |  |  |
| T-132         V120         -93.16380789         43.47848975         708694.8782         93147.76555           T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-138         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48112400         734514.696         94363.34348           T-145         V120                                                                                                                          | T-126                        | V120         | -93.04677505 | 43.48569653 | 739731.5214 | 96091.03786 |  |  |  |  |
| T-133         V120         -93.15325979         43.47551980         711505.1866         92091.89021           T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11670452         43.47603307         721207.0651         92374.32181           T-138         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120                                                                                                                           | T-127                        | V120         | -93.03728569 | 43.48908060 | 742236.4873 | 97352.12929 |  |  |  |  |
| T-134         V120         -93.14211232         43.47470841         714467.2165         91824.74782           T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11670452         43.47603307         721207.0651         92374.32181           T-138         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         734514.696         94367.92902           T-146         V120                                                                                                                            | T-132                        | V120         | -93.16380789 | 43.47848975 | 708694.8782 | 93147.76555 |  |  |  |  |
| T-135         V120         -93.13375211         43.47741088         716676.8097         92831.55955           T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11670452         43.47603307         721207.0651         92374.32181           T-138         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.076649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                        | T-133                        | V120         | -93.15325979 | 43.47551980 | 711505.1866 | 92091.89021 |  |  |  |  |
| T-136         V120         -93.12238491         43.47480011         719703.6805         91909.79708           T-137         V120         -93.11670452         43.47603307         721207.0651         92374.32181           T-138         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.056649787         43.48108846         736305.8587         94374.12486           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                       | T-134                        | V120         | -93.14211232 | 43.47470841 | 714467.2165 | 91824.74782 |  |  |  |  |
| T-137         V120         -93.11670452         43.47603307         721207.0651         92374.32181           T-138         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                       | T-135                        | V120         | -93.13375211 | 43.47741088 | 716676.8097 | 92831.55955 |  |  |  |  |
| T-138         V120         -93.11237570         43.48037812         722340.1637         93969.72081           T-139         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                                                                                                                                     | T-136                        | V120         | -93.12238491 | 43.47480011 | 719703.6805 | 91909.79708 |  |  |  |  |
| T-139         V120         -93.10680303         43.48118872         723816.3263         94280.17919           T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T-137                        | V120         | -93.11670452 | 43.47603307 | 721207.0651 | 92374.32181 |  |  |  |  |
| T-140         V120         -93.09903980         43.48127783         725876.5765         94333.70134           T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T-138                        | V120         | -93.11237570 | 43.48037812 | 722340.1637 | 93969.72081 |  |  |  |  |
| T-141         V120         -93.09374277         43.47617990         727301.7379         92489.9151           T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T-139                        | V120         | -93.10680303 | 43.48118872 | 723816.3263 | 94280.17919 |  |  |  |  |
| T-142         V120         -93.08683083         43.47617041         729136.55         92505.47124           T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T-140                        | V120         | -93.09903980 | 43.48127783 | 725876.5765 | 94333.70134 |  |  |  |  |
| T-143         V120         -93.07862256         43.47977151         731301.6438         93840.89065           T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T-141                        | V120         | -93.09374277 | 43.47617990 | 727301.7379 | 92489.9151  |  |  |  |  |
| T-144         V120         -93.07365550         43.48116670         732614.6978         94363.34348           T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T-142                        | V120         | -93.08683083 | 43.47617041 | 729136.55   | 92505.47124 |  |  |  |  |
| T-145         V120         -93.06649787         43.48112400         734514.696         94367.92902           T-146         V120         -93.05975017         43.48108846         736305.8587         94374.12486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T-143                        | V120         | -93.07862256 | 43.47977151 | 731301.6438 | 93840.89065 |  |  |  |  |
| T-146 V120 -93.05975017 43.48108846 736305.8587 94374.12486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T-144                        | V120         | -93.07365550 | 43.48116670 | 732614.6978 | 94363.34348 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T-145                        | V120         | -93.06649787 | 43.48112400 | 734514.696  | 94367.92902 |  |  |  |  |
| T-152 V120 -93 16687018 43 46737505 707020 2653 80088 60687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T-146                        | V120         | -93.05975017 | 43.48108846 | 736305.8587 | 94374.12486 |  |  |  |  |
| 1 132   1 120   73.10007010   43.40737303   707720.2003   07000.00007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T-152                        | V120         | -93.16687018 | 43.46737505 | 707920.2653 | 89088.60687 |  |  |  |  |
| T-153 V120 -93.15225135 43.46030145 711826.2293 86547.16955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T-153                        | V120         | -93.15225135 | 43.46030145 | 711826.2293 | 86547.16955 |  |  |  |  |

| T-154   | V120 (PTC<br>Tower) | -93.13858641 | 43.46026940 | 715454.6786 | 86570.6763  |
|---------|---------------------|--------------|-------------|-------------|-------------|
| T-155   | V120                | -93.13331816 | 43.46169034 | 716848.4131 | 87102.35329 |
| T-156   | V120                | -93.12910607 | 43.46372880 | 717959.4343 | 87856.43875 |
| T-157   | V120                | -93.11839593 | 43.46396748 | 720802.1674 | 87971.76396 |
| T-158   | V120                | -93.10252482 | 43.46709409 | 725004.3755 | 89154.09379 |
| T-159   | V120                | -93.09604751 | 43.46718724 | 726723.6889 | 89205.68232 |
| T-162   | V120                | -93.06269673 | 43.47459620 | 735549.0731 | 91999.25069 |
| T-163   | V120                | -93.05586846 | 43.47461730 | 737361.596  | 92026.40429 |
| T-169   | V120                | -93.15487581 | 43.45222497 | 711157.5939 | 83596.49506 |
| T-170   | V120                | -93.14877424 | 43.45562142 | 712765.9532 | 84850.13396 |
| T-179   | V120                | -93.15025929 | 43.44736012 | 712400.6432 | 81834.98036 |
| T-180   | V120                | -93.14378448 | 43.44884156 | 714114.9649 | 82391.62925 |
| T-181   | V120                | -93.13723664 | 43.44997498 | 715849.8393 | 82821.74104 |
| T-182   | V120                | -93.13098127 | 43.45038373 | 717509.5861 | 82987.07465 |
| T-183   | V120                | -93.12668731 | 43.45224320 | 718643.1815 | 83676.16128 |
| T-118   | V110                | -93.02664808 | 43.49320566 | 745042.8807 | 98886.99298 |
| T-147   | V110                | -93.05048464 | 43.47942009 | 738771.7782 | 93792.51641 |
| T-160   | V120                | -93.07566962 | 43.46870624 | 732127.9679 | 89815.73149 |
| T-161   | V120                | -93.06859829 | 43.47024793 | 733999.3096 | 90397.5605  |
| ALT-172 | TBD                 | -93.08217851 | 43.46144765 | 730427.6503 | 87151.75801 |
| T-184   | V120                | -93.18735209 | 43.48542718 | 702421.9932 | 95618.22334 |
| T-185   | V120                | -93.18171478 | 43.47884325 | 703940.4342 | 93232.08482 |
| ALT-186 | TBD                 | -93.17432267 | 43.46993287 | 705932.9736 | 90002.38071 |
| T-187   | V120                | -93.16333117 | 43.46338235 | 708873.6416 | 87642.1036  |
| ALT-188 | TBD                 | -93.15919083 | 43.46079796 | 709981.9189 | 86710.51012 |
| T-189   | V120                | -93.15574280 | 43.45630053 | 710913.1352 | 85079.8821  |
| T-190   | V120                | -93.14558127 | 43.44550826 | 713649.5693 | 81171.96421 |
| ALT-191 | TBD                 | -93.14650504 | 43.46981927 | 713318.3945 | 90031.26533 |
| ALT-192 | TBD                 | -93.06992121 | 43.45902725 | 733691.5001 | 86303.78459 |
| T-193   | V120                | -93.04801472 | 43.45999321 | 739504.3778 | 86718.36368 |
| T-194   | V120                | -93.03961443 | 43.45763926 | 741744.2374 | 85884.69737 |
| T-195   | V120                | -93.03043950 | 43.45765450 | 744180.3919 | 85917.12262 |
| T-196   | V120                | -93.04033311 | 43.46883332 | 741508.6608 | 89962.93113 |
| ALT-197 | TBD                 | -93.02658082 | 43.46774888 | 745164.0252 | 89607.98338 |
| T-198   | V110                | -93.02672703 | 43.47443405 | 745098.0878 | 92044.34948 |
| T-199   | V110                | -93.03557421 | 43.47940852 | 742729.5652 | 93831.57169 |
| T-200   | V110                | -93.03117648 | 43.48104454 | 743890.2655 | 94440.81366 |
| T-201   | V110                | -93.02736862 | 43.48599911 | 744880.8861 | 96258.01493 |
| T-205   | V120                | -93.17200000 | 43.48302800 | 706504.83   | 94781.44666 |

## Westwood

 Phone
 (952) 937-5150
 12701 Whitewater Dr

 Fax
 (952) 937-5822
 Minnetonka, MN 55343

 Toll Free
 (888) 937-5150
 westwoodps.com

| ١ | O REVISION ZONE        | DATE BY      | СНК | ENG | REVISION ZONE | DATE | BY | СНК | ENG | REFERENCE D         | RAWINGS       | I hereby certify that this plan was prepared by me or under my direct supervision and that I |
|---|------------------------|--------------|-----|-----|---------------|------|----|-----|-----|---------------------|---------------|----------------------------------------------------------------------------------------------|
|   | 90% CIVIL PLANS L083   | 04/17/20 TDD | DJN | DJN |               |      |    |     |     | DWG NO. MANUFACTURE | R DESCRIPTION | me or under my direct supervision and that I am a duly licensed PROFESSIONAL ENGINEER        |
|   | 0 IFC CIVIL PLANS L083 | 05/04/20 TDD | DJN | DJN |               |      |    |     |     |                     |               | under the laws of the State of Minnesota.                                                    |
|   |                        |              |     |     |               |      |    |     |     |                     |               | Daville J. Mygon                                                                             |
|   |                        |              |     |     |               |      |    |     |     |                     |               | Danielle J Nygren                                                                            |
|   |                        |              |     |     |               |      |    |     |     |                     |               | Printed Name  05/04/20  License No. 55542                                                    |

|               |          |                                          |             |       |                                                                                                                                                                             | (000) 00: 0:00 1:00 1:00             |
|---------------|----------|------------------------------------------|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|               |          |                                          |             |       |                                                                                                                                                                             | Westwood Professional Services, Inc. |
| by<br>I<br>ER |          | NORTHERN STATES FREEBORN V               | POWER COMPA | ANY   | THIS MAP/DOCUMENT IS A TOOL TO ASSIST EMPLOYEES IN THE PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS PROVIDED FOR BY USING SAFETY PRACTICES, PROCEDURES, AND EQUIPMENT | UNIT 0 CIVIL ACCESS ROADS            |
| _             |          | Freeborn County, MN and Worth County, IA |             |       | AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND                                                                                                                            | TURBINE COORDINATES                  |
|               | DWN: TDD | DATE:                                    | CHK:        | DATE: | MANUALS.                                                                                                                                                                    |                                      |
| _             | ENG: DJN | DATE:                                    | CHK:        | DATE: |                                                                                                                                                                             |                                      |
|               | PM: DJN  | DATE:                                    | PROJ. NO:   | 22586 | ENERGY SUPPLY                                                                                                                                                               | NH-276086-2-1                        |
|               | APVD:    | DATE:                                    | SCALE: NO   | ONE   | ENGINEERING & CONSTRUCTION                                                                                                                                                  | 3 3 3 3 3                            |

## DRAINAGE CROSSING SCHEDULE

|                    | Freeborn Wind Project - Minnesota |             |                        |        |                |         |  |  |  |  |  |
|--------------------|-----------------------------------|-------------|------------------------|--------|----------------|---------|--|--|--|--|--|
| Crossing           |                                   | Design Opti | Plan                   | Accord |                |         |  |  |  |  |  |
| Crossing<br>Number | Low Wate                          | er Crossing | Culvert Sizing (CMP)   | Sheet  | Access<br>Road | Station |  |  |  |  |  |
| Namber             | Design                            | Length (LF) | Curvert Sizing (Civir) | SHOOL  | Rodd           |         |  |  |  |  |  |
| 4                  | FLEXAMAT                          | 450         | 1-36", 2-30", 3-24"    | 8-6    | Road 6         | 01+68   |  |  |  |  |  |
| 5                  | FLEXAMAT                          | 160         | 1-48", 2-30", 3-24"    | 8-3    | Road 8         | 05+00   |  |  |  |  |  |
| 7                  | FLEXAMAT                          | 370         | 1-54", 2-42", 3-36"    | 8-5    | Road 12        | 23+87   |  |  |  |  |  |
| 8                  | FLEXAMAT                          | 50          | 1-18"                  | 8-7    | Road 14        | 22+33   |  |  |  |  |  |
| 9                  | -                                 | -           | 1-36", 2-24", 4-18"    | 8-7    | Road 14        | 30+55   |  |  |  |  |  |
| 12                 | -                                 | -           | 1-48", 2-36", 3-30"    | 8-10   | Road 19        | 10+85   |  |  |  |  |  |
| 13                 | FLEXAMAT                          | 100         | 1-48", 2-36", 3-30"    | 8-11   | Road 21        | 07+00   |  |  |  |  |  |
| 14                 | FLEXAMAT                          | 50          | 1-30", 2-24", 3-18"    | 8-11   | Road 21        | 17+25   |  |  |  |  |  |
| 15                 | FLEXAMAT                          | 50          | 1-18"                  | 8-11   | Road 21        | 24+00   |  |  |  |  |  |
| 16                 | FLEXAMAT                          | 120         | 1-36", 2-24", 4-18"    | 8-11   | Road 21        | 27+25   |  |  |  |  |  |
| 17                 | FLEXAMAT                          | 50          | 1-48", 2-36", 3-30"    | 8-11   | Road 21        | 35+83   |  |  |  |  |  |
| 18                 | FLEXAMAT                          | 50          | 1-42", 2-30", 4-24"    | 8-12   | Road 22        | 08+66   |  |  |  |  |  |
| 19                 | FLEXAMAT                          | 50          | -                      | 8-12   | Road 22        | 13+43   |  |  |  |  |  |
| 20                 | FLEXAMAT                          | 130         | -                      | 8-14   | Road 24        | 03+15   |  |  |  |  |  |
| 21                 | FLEXAMAT                          | 130         | 1-48", 2-36", 3-30"    | 8-16   | Road 25        | 07+13   |  |  |  |  |  |
| 22                 | FLEXAMAT                          | 60          | 1-30", 2-24", 3-18"    | 8-16   | Road 25        | 10+00   |  |  |  |  |  |
| 23                 | FLEXAMAT                          | 50          | 1-30", 2-24", 4-18"    | 8-17   | Road 26        | 04+37   |  |  |  |  |  |
| 27                 | FLEXAMAT                          | 50          | 1-36", 2-30", 3-24"    | 8-23   | Road 38        | 04+50   |  |  |  |  |  |
| 28                 | FLEXAMAT                          | 70          | 1-48", 2-36", 3-30"    | 8-23   | Road 39        | 08+21   |  |  |  |  |  |
| 33                 | FLEXAMAT                          | 50          | -                      | 8-26   | Road 46        | 35+00   |  |  |  |  |  |
| 34                 | FLEXAMAT                          | 120         | 1-30", 2-24", 4-18"    | 8-27   | Road 48        | 09+30   |  |  |  |  |  |

|                    |          | Freebor     | n Wind Project - Iowa |               |                |         |  |
|--------------------|----------|-------------|-----------------------|---------------|----------------|---------|--|
| Crossing           |          | Design Opt  | ions                  | Dlan          | Λοοοοο         |         |  |
| Crossing<br>Number | Low wate | r Crossing  | Culvert Sizing (CMD)  | Plan<br>Sheet | Access<br>Road | Station |  |
| Number             | Design   | Length (LF) | Culvert Sizing (CMP)  | Silect        | Rodu           |         |  |
| 36                 | FLEXAMAT | 110         | 1-36", 2-30", 3-24"   | 9-1           | Road 102       | 36+00   |  |
| 37                 | FLEXAMAT | 330         | -                     | 9-1           | Road 102       | 05+75   |  |
| 38                 | FLEXAMAT | 50          | 1-18"                 | 9-2           | Road 104       | 07+07   |  |
| 39                 | FLEXAMAT | 50          | 1-42", 2-30", 4-24"   | 9-5           | Road 108       | 30+66   |  |
| 40                 | FLEXAMAT | 250         | 1-18"                 | 9-5           | Road 108       | 18+87   |  |
| 41                 | FLEXAMAT | 50          | 1-24", 2-18"          | 9-5           | Road 108       | 10+00   |  |
| 42                 | FLEXAMAT | 50          | 1-24", 2-18"          | 9-5           | Road 110       | 02+85   |  |
| 43                 | -        |             | 1-54", 2-42", 3-36"   | 9-6           | Road 113       | 12+85   |  |
| 44                 | FLEXAMAT | 50          | 1-36", 2-30", 3-24"   | 9-7           | Road 114       | 23+00   |  |
| 45                 | FLEXAMAT | 70          | 1-36", 2-30", 3-24"   | 9-8           | Road 117       | 05+71   |  |
| 46                 | FLEXAMAT | 50          | 1-30", 2-24", 4-18"   | 9-10          | Road 121       | 07+00   |  |
| 47                 | FLEXAMAT | 50          | 1-36", 2-30", 3-24"   | 9-12          | Road 124       | 07+00   |  |
| 48                 | FLEXAMAT | 50          | 1-24", 2-18"          | 9-11          | Road 133       | 16+13   |  |
| 49                 | FLEXAMAT | 50          | 1-36", 2-30", 3-24"   | 9-12          | Road 135       | 10+00   |  |
| 50                 | FLEXAMAT | 50          | 1-24", 2-18"          | 9-13          | Road 138       | 38+00   |  |
| 51                 | FLEXAMAT | 50          | -                     | 9-13          | Road 138       | 08+00   |  |
| 52                 | FLEXAMAT | 50          | 1-42", 2-30", 4-24"   | 9-14          | Road 140       | 46+40   |  |
| 53                 | FLEXAMAT | 50          | 1-30", 2-24", 3-18"   | 9-14          | Road 140       | 38+90   |  |
| 54                 | FLEXAMAT | 50          | 1-42", 2-30", 3-24"   | 9-15          | Road 146       | 10+54   |  |
| 55                 | FLEXAMAT | 50          | 1-30", 2-24", 3-18"   | 9-15          | Road 146       | 22+50   |  |
| 56                 | FLEXAMAT | 50          | 1-42", 2-30", 3-24"   | 9-15          | Road 146       | 25+22   |  |
| 57                 | FLEXAMAT | 50          | -                     | 9-19          | Road 154       | 01+70   |  |
| 58                 | FLEXAMAT | 50          | -                     | 9-19          | Road 156       | 03+80   |  |
| 59                 | FLEXAMAT | 50          | 1-30", 2-24", 3-18"   | 9-21          | Road 158       | 10+75   |  |
| 60                 | FLEXAMAT | 50          | 1-18"                 | 9-21          | Road 158       | 21+17   |  |
| 61                 | FLEXAMAT | 50          | 1-30", 2-24", 4-18"   | 9-24          | Road 169       | 09+43   |  |
| 62                 | FLEXAMAT | 50          | 1-36", 2-30", 3-24"   | 9-24          | Road 170       | 04+50   |  |
| 63                 | FLEXAMAT | 50          | 1-18"                 | 9-24          | Road 179       | 22+53   |  |
| 64                 | FLEXAMAT | 100         | 1-36", 2-24", 4-18"   | 9-24          | Road 179       | 16+72   |  |
| 65                 | FLEXAMAT | 50          | -                     | 9-25          | Road 181       | 03+50   |  |
| 66                 | FLEXAMAT | 50          | -                     | 9-25          | Road 182       | 03+33   |  |
| 67                 | FLEXAMAT | 50          | 1-24", 2-18"          | 9-17          | Road 152       | 06+10   |  |
| 100                | FLEXAMAT | 100         | 1-36", 2-30", 3-24"   | 9-9           | Road 185       | 16+00   |  |
| 101                | FLEXAMAT | 50          | 1-30", 2-24", 3-18"   | 9-28          | Road 194       | 13+00   |  |
| 102                | FLEXAMAT | 100         | 1-36", 2-30", 3-24"   | 9-17          | Road 199       | 24+25   |  |

## NOTES:

- 1. DRAINAGE CROSSING AND PUBLIC ENTRANCE CULVERT DESIGN IS BASED ON A 2-YEAR HYDRAULIC ANALYSIS, UNLESS OTHERWISE NOTED. CULVERTS WITHIN THE PUBLIC ROW SHALL BE VERIFIED WITH LOCAL JURISDICTION PRIOR TO INSTALLATION.
- 2. PERMANENT CULVERTS SHALL ONLY BE INSTALLED UPON OWNER APPROVAL. WHERE MULTIPLE DESIGN OPTIONS ARE LISTED, BOTH ARE NOT REQUIRED.
- 3. FINAL LWC INSTALLATION LOCATIONS SHALL BE AGREED TO BY OWNER AND CONTRACTOR. ANY INCREASES OR DEDUCTIONS SHALL BE TRUED UP PRIOR TO SUBSTANTIAL COMPLETION.
- 4. MULTIPLE SIZING OPTIONS FOR CULVERTS ARE LISTED FOR FLEXIBILITY. CONTRACTOR SHALL CHOOSE THE BEST FIT DURING INSTALLATION.

## PUBLIC ROAD ENTRANCE CULVERTS

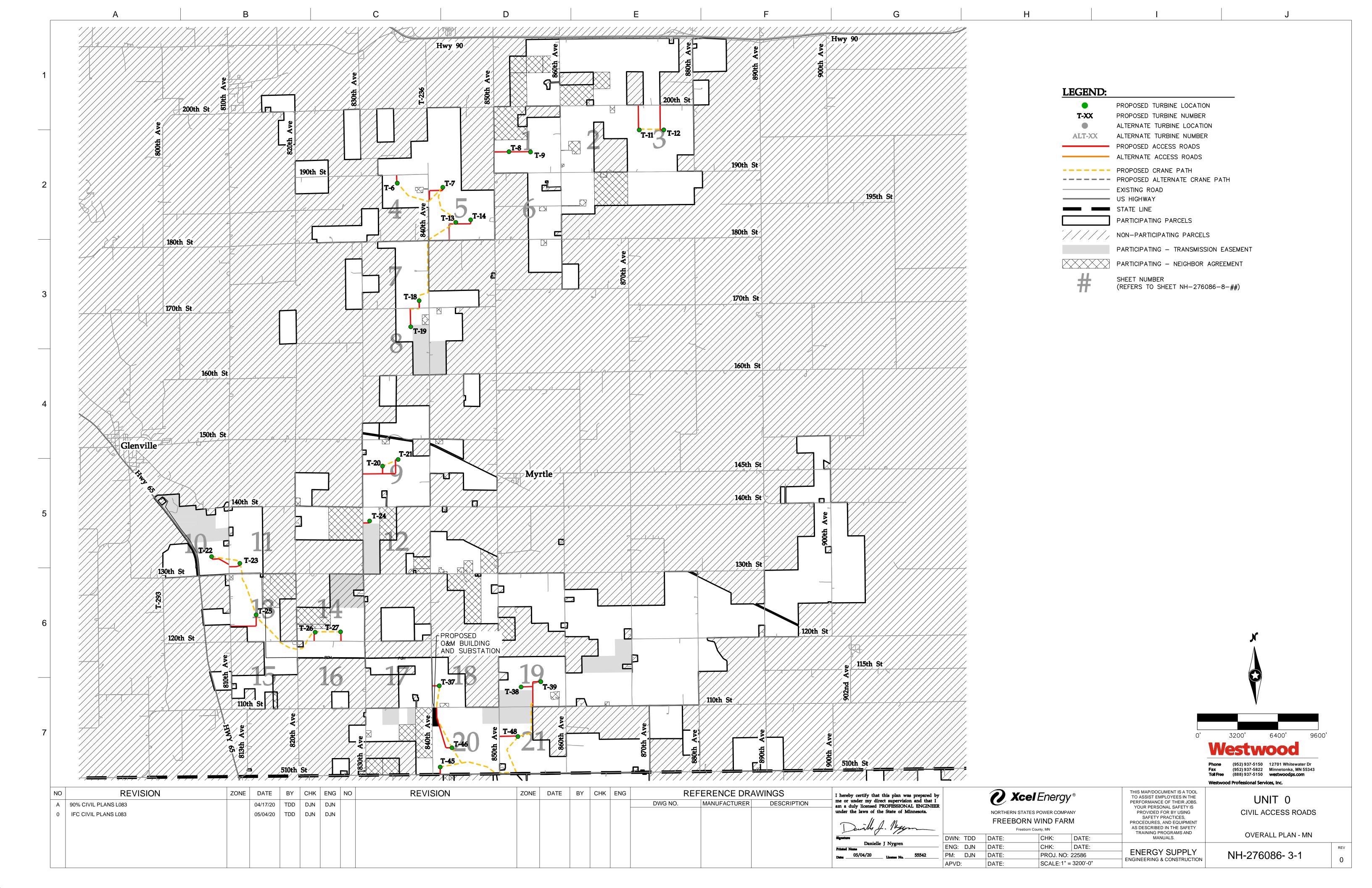
|                    |          | Freeborn Wind       | Project - Minn | esota                              |       |
|--------------------|----------|---------------------|----------------|------------------------------------|-------|
| Crossing<br>Number | Туре     | 2-Year Size         | Plan Sheet     | Public/Access Road<br>Intersection | Notes |
| 3                  | CMP      | 1-18"               | 8-6            | 190th St/Road 6                    |       |
| 4                  | CMP      | 1-18"               | 8-7            | 840th St/Road 7                    |       |
| 5                  | Existing | -                   | 8-3            | 850th St/Road 9                    |       |
| 7                  | CMP      | 1-18"               | 8-5            | 200th St/Road 11                   |       |
| 8                  | CMP      | 1-18"               | 8-5            | 200th St/Road 12                   |       |
| 9                  | CMP      | 1-18"               | 8-7            | 180th St/Road 14                   |       |
| 12                 | CMP      | 1-18"               | 8-9            | 170th St/Road 18                   |       |
| 13                 | CMP      | 1-18"               | 8-10           | 170th St/Road 19                   |       |
| 14                 | CMP      | 1-18"               | 8-11           | 830th St/Road 21                   |       |
| 15                 | CMP      | 1-18"               | 8-12           | 810h St/Road 22                    |       |
| 16                 | CMP      | 1-42"; 2-30"; 4-24" | 8-13           | 810th St/Road 23                   |       |
| 17                 | CMP      | 1-18"               | 8-16           | 810th St/Road 25                   |       |
| 18                 | CMP      | 1-18"               | 8-17           | 120th St/Road 26                   |       |
| 67                 | CMP      | 1-18"               | 8-17           | 120th St/Road 27                   |       |
| 25                 | CMP      | 1-18"               | 8-22           | 840th St/Road 37                   |       |
| 26                 | CMP      | 1-24"; 2-18"        | 8-23           | 110th St/Road 39                   |       |
| 29                 | CMP      | 1-18"               | 8-26           | 510th St/Road 45                   |       |
| 30                 | CMP      | 1-24"; 2-18"        | 8-27           | 850th St/Road 48                   |       |

|                    |          | Freeborn Wi         | nd Project - Io | wa                                 |       |
|--------------------|----------|---------------------|-----------------|------------------------------------|-------|
| Crossing<br>Number | Туре     | 2-Year Size         | Plan Sheet      | Public/Access Road<br>Intersection | Notes |
| 31                 | CMP      | 1-18"               | 9-1             | 500th St/Road 102                  |       |
| 32                 | CMP      | 1-18"               | 9-2             | Raven Ave/Road 106                 |       |
| 34                 | CMP      | 1-18"               | 9-4             | Thrush Ave/Road 107                |       |
| 35                 | CMP      | 1-18"               | 9-6             | 500th St/Road 113                  |       |
| 36                 | CMP      | 1-18"               | 9-7             | 500th St/Road 114                  |       |
| 37                 | CMP      | 1-18"               | 9-8             | Yarrow Ave/Road 116                |       |
| 38                 | CMP      | 1-18"               | 9-8             | Zinnia Ave/Road 117                |       |
| 40                 | CMP      | 1-18"               | 9-9             | 500th St/Road 185                  |       |
| 41                 | CMP      | 1-18"               | 9-10            | Raven Ave/Road 121                 |       |
| 42                 | CMP      | 1-18"               | 9-11            | 500th St/Road 122                  |       |
| 43                 | CMP      | 1-18"               | 9-11            | 500th St/Road 123                  |       |
| 44                 | CMP      | 1-18"               | 9-12            | 500th St/Road 124                  |       |
| 45                 | CMP      | 1-18"               | 9-14            | 500th St/Road 125                  |       |
| 46                 | CMP      | 1-18"               | 9-16            | 500th St/Road 126                  |       |
| 47                 | CMP      | 1-18"               | 9-8             | 500th St/Road 127                  |       |
| 48                 | CMP      | 1-18"               | 9-10            | Raven Ave/Road 132                 |       |
| 49                 | CMP      | 1-18"               | 9-11            | Raven Ave/Road 133                 |       |
| 50                 | CMP      | 1-18"               | 9-11            | 490th St/Road 134                  |       |
| 51                 | CMP      | 1-18"               | 9-12            | 490th St/Road 135                  |       |
| 52                 | CMP      | 1-18"               | 9-13            | 490th St/Road 136                  |       |
| 53                 | CMP      | 1-18"               | 9-13            | 490th St/Road 137                  |       |
| 54                 | CMP      | 1-18"               | 9-13            | 490th St/Road 138                  |       |
| 55                 | CMP      | 1-18"               | 9-14            | Vine Ave/Road 140                  |       |
| 56                 | CMP      | 1-18"               | 9-15            | Vine Ave/Road 146                  |       |
| 57                 | Existing | -                   | 9-17            | 490th St/Road 152                  |       |
| 58                 | CMP      | 1-18"               | 9-18            | 480th St/Road 153                  |       |
| 59                 | CMP      | 1-36"; 2-24"; 4-18" | 9-19            | 480th St/Road 154                  |       |
| 60                 | CMP      | 1-18"               | 9-19            | Thrush Ave/Road 156                |       |
| 61                 | CMP      | 1-18"               | 9-20            | Thrush Ave/Road 157                |       |
| 62                 | CMP      | 1-18"               | 9-24            | Raven Ave/Road 169                 |       |
| 63                 | CMP      | 1-18"               | 9-24            | 480th St/Road 170                  |       |
| 64                 | CMP      | 1-18"               | 9-24            | Spruce Ave/Road 179                |       |
| 65                 | CMP      | 1-18"               | 9-25            | Spruce Ave/Road 181                |       |
| 66                 | CMP      | 1-18"               | 9-25            | Thrush Ave/Road 182                |       |
| 100                | CMP      | 1-30"; 2-24"; 3-18" | 9-26            | 480th St/Road 189                  |       |
| 102                | CMP      | 1-18"               | 9-24            | Yarrow Ave/Road 193                |       |
| 103                | CMP      | 1-18"               | 9-28            | Yarrow Ave/Road 194                |       |
| 104                | CMP      | 1-24", 2-18"        | 9-28            | Zinnia Ave/Road 195                |       |
| 106                | CMP      | 1-24", 2-18"        | 9-17            | Zinnia Ave/Road 198                |       |
| 107                | CMP      | 1-24", 2-18"        | 9-17            | Zinnia Ave/Road 199                |       |
| 108                | CMP      | 1-30"; 2-24"; 3-18" | 9-17            | 500th St/Road 201                  |       |
| 109                | CMP      | 1-18"               | 9-23            | 485th St/Road 161                  |       |
| 110                | CMP      | 1-18"               | 9-9             | 500th St/Road 184                  |       |

## TEMPORARY CULVERTS FOR CRANE DITCH CROSSING

| Crossing<br>Number | Туре | Gage | 1-Year Size | Plan Sheet | Location                |
|--------------------|------|------|-------------|------------|-------------------------|
| 1                  | CMP  | 12   | 2-54"       | 8-19       | East of T-45            |
| 2                  | CMP  | 12   | 2-54"       | 9-7        | West of T-114           |
| 3                  | CMP  | 12   | 2-66"       | 9-27       | Between T-155 and T-183 |
| 4                  | CMP  | 12   | 1-84"       | 9-26       | Between T-169 and T-179 |

## NOTES:


- 1. TEMPORARY CULVERTS ARE SIZED TO THE 1 YEAR, 24 HOUR STORM
- 2. FOR CULVERTS 54" AND LARGER, MINIMUM STEEL GAGE IS 12 AND A MINIMUM OF 2' OF COVER IS REQUIRED.
- 8. CRANE WALK SHOULD BE WIDE ENOUGH FOR A MINIMUM 10 FOOT SETBACK ON BOTH SIDES MEASURED FROM THE TOP OF THE SLOPE TO THE OUTER EDGE OF THE LARGEST CRANE TRACK. A MINIMUM 55FT WIDE CROSSING IS REQUIRED PER THE LR1600 CRANE PROVIDED BY WANZEK.
- 9. SEE TESTING REQUIREMENTS ON SHEET 7-1.

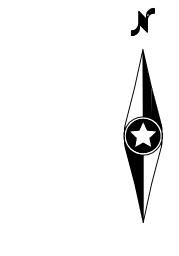
## Westwood

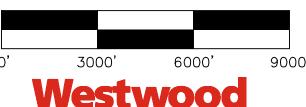
Phone (952) 937-5150 12701 Whitewater Dr Fax (952) 937-5822 Minnetonka, MN 55343 Toll Free (888) 937-5150 westwoodps.com

| NO      | REVISION         | ZONE | DATE     | BY  | СНК | ENG | NO | REVISION | ZONE | DATE | BY | СНК | ENG | REFERENCE DRA        | AWINGS      | I hereby certify that this plan was prepared by                                       |          | 2 x        |
|---------|------------------|------|----------|-----|-----|-----|----|----------|------|------|----|-----|-----|----------------------|-------------|---------------------------------------------------------------------------------------|----------|------------|
| A 90% ( | CIVIL PLANS L083 |      | 04/17/20 | TDD | DJN | DJN |    |          |      |      |    |     |     | DWG NO. MANUFACTURER | DESCRIPTION | me or under my direct supervision and that I am a duly licensed PROFESSIONAL ENGINEER |          |            |
| 0 IFC C | CIVIL PLANS L083 |      | 05/04/20 | TDD | DJN | DJN |    |          |      |      |    |     |     |                      |             | under the laws of the State of Minnesota.                                             |          | NORTHERN   |
|         |                  |      |          |     |     |     |    |          |      |      |    |     |     |                      |             | -// 1 M                                                                               |          | FREEB      |
|         |                  |      |          |     |     |     |    |          |      |      |    |     |     |                      |             | Janks J. 1 you                                                                        |          | Freeborn ( |
|         |                  |      |          |     |     |     |    |          |      |      |    |     |     |                      |             | Signature                                                                             | DWN: TDD | DATE:      |
|         |                  |      |          |     |     |     |    |          |      |      |    |     |     |                      |             | Danielle J Nygren Printed Name                                                        | ENG: DJN | DATE:      |
|         |                  |      |          |     |     |     |    |          |      |      |    |     |     |                      |             | Date: 05/04/20 License No. 55542                                                      | PM: DJN  | DATE:      |
|         |                  |      |          |     |     |     |    |          |      |      |    |     |     |                      |             |                                                                                       | APVD:    | DATE:      |

|   |                       |                     |       | Westwood Professional Services, Inc.                                                                                                                                        |                           |     |  |  |  |  |  |  |
|---|-----------------------|---------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|--|--|--|--|--|--|
|   | NORTHERN STATES I     | POWER COMPA         | NY    | THIS MAP/DOCUMENT IS A TOOL TO ASSIST EMPLOYEES IN THE PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS PROVIDED FOR BY USING SAFETY PRACTICES, PROCEDURES, AND EQUIPMENT | UNIT 0 CIVIL ACCESS ROADS |     |  |  |  |  |  |  |
|   | Freeborn County, MN a | nd Worth County, IA |       | AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND                                                                                                                            | CULVERT SCHEDULE          |     |  |  |  |  |  |  |
| D | DATE:                 | CHK:                | DATE: | MANUALS.                                                                                                                                                                    | OOLVERT GOTTEBOLE         |     |  |  |  |  |  |  |
| N | DATE:                 | CHK:                | DATE: |                                                                                                                                                                             |                           | REV |  |  |  |  |  |  |
| N | DATE:                 | PROJ. NO:           | 22586 | ENERGY SUPPLY                                                                                                                                                               | NH-276086-2-2             |     |  |  |  |  |  |  |
|   | DATE:                 | SCALE: NO           | NF    | ENGINEERING & CONSTRUCTION                                                                                                                                                  |                           |     |  |  |  |  |  |  |





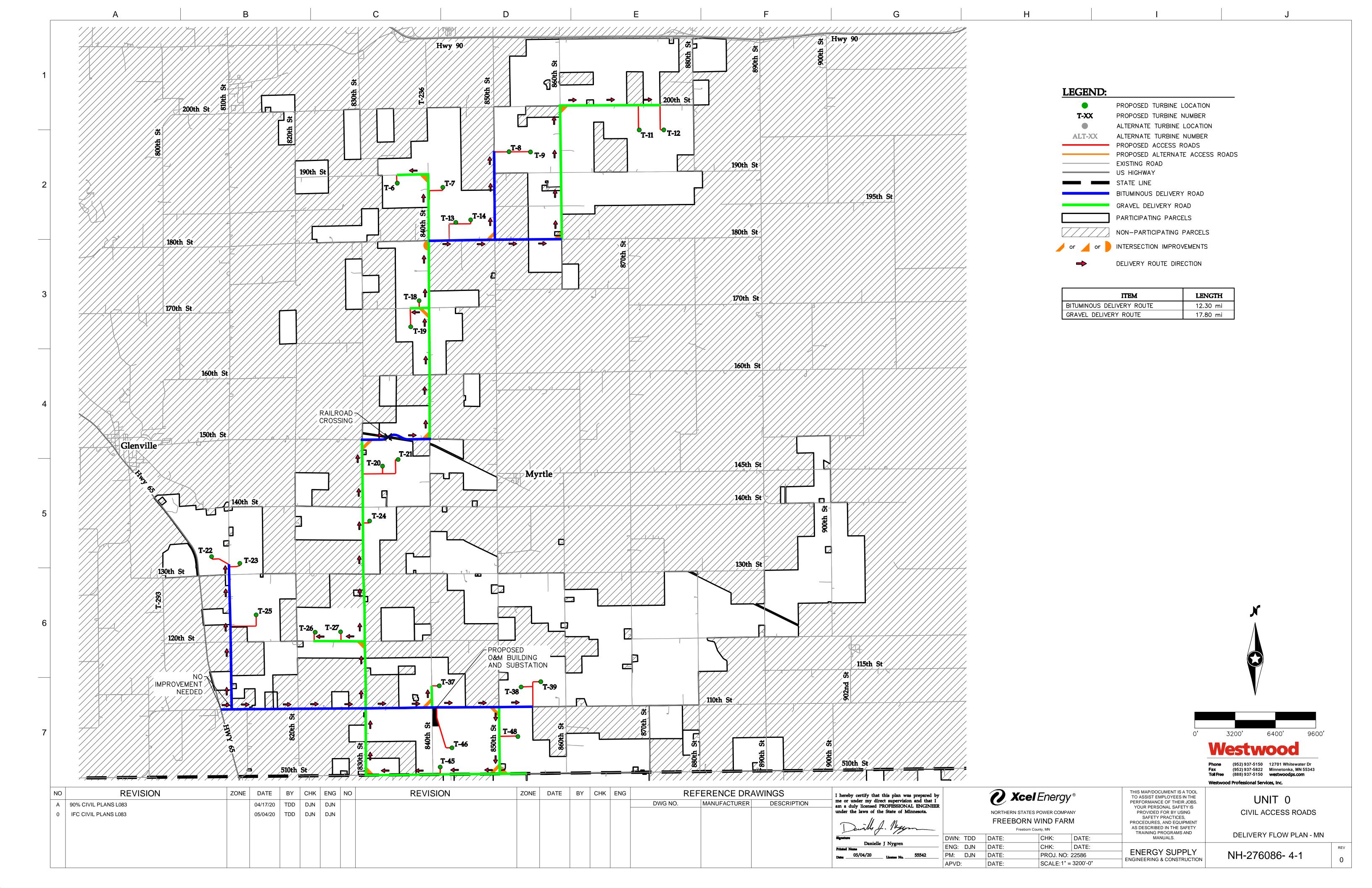


## **LEGEND:**

PROPOSED TURBINE LOCATION PROPOSED TURBINE NUMBER ALTERNATE TURBINE LOCATION ALTERNATE TURBINE NUMBER PROPOSED ACCESS ROADS ALTERNATE ACCESS ROADS ---- PROPOSED CRANE PATH ---- PROPOSED ALTERNATE CRANE PATH EXISTING ROAD US HIGHWAY STATE LINE PARTICIPATING PARCELS NON-PARTICIPATING PARCELS PARTICIPATING - TRANSMISSION EASEMENT

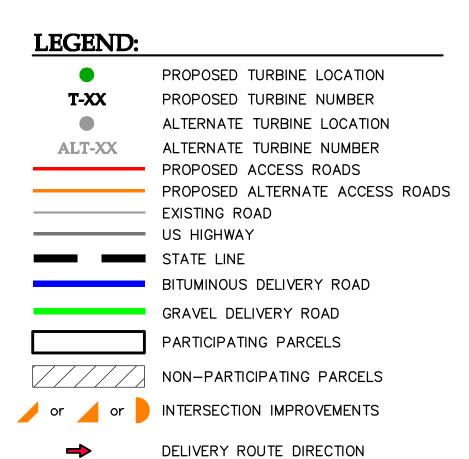
PARTICIPATING - NEIGHBOR AGREEMENT

SHEET NUMBER (REFERS TO SHEET NH-276086-9-##)

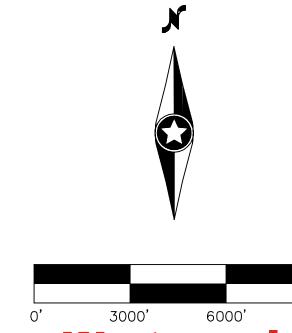





 Phone
 (952) 937-5150
 12701 Whitewater Dr


 Fax
 (952) 937-5822
 Minnetonka, MN 55343

 Toll Free
 (888) 937-5150
 westwoodps.com


| NO | REVISION             | ZONE DATE BY | CHK ENG NO | REVISION | ZONE | DATE | BY CHK | ENG | R       | EFERENCE DRA | WINGS       |          | n xo        | <b>el</b> Energy | <b>,</b> ® | THIS MAP/DOCUMENT IS A TOOL TO ASSIST EMPLOYEES IN THE | UNIT 0             |     |
|----|----------------------|--------------|------------|----------|------|------|--------|-----|---------|--------------|-------------|----------|-------------|------------------|------------|--------------------------------------------------------|--------------------|-----|
| Α  | 90% CIVIL PLANS L083 | 04/17/20 TDD | DJN DJN    |          |      |      |        |     | DWG NO. | MANUFACTURER | DESCRIPTION |          |             |                  |            | PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS     | UNIT               |     |
| 0  | IFC CIVIL PLANS L083 | 05/04/20 TDD | DJN DJN    |          |      |      |        |     |         |              |             |          | NORTHERN ST | ATES POWER COMP. | NY         | PROVIDED FOR BY USING                                  | CIVIL ACCESS ROADS |     |
|    |                      |              |            |          |      |      |        |     |         |              |             |          | FREEBO      | RN WIND FAR      | M          | SAFETY PRACTICES, PROCEDURES, AND EQUIPMENT            |                    |     |
|    |                      |              |            |          |      |      |        |     |         |              |             |          | Fre         | born County, MN  |            | AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND       |                    |     |
|    |                      |              |            |          |      |      |        |     |         |              |             | DWN: TDD | DATE:       | CHK:             | DATE:      | MANUALS.                                               | OVERALL PLAN - IA  |     |
|    |                      |              |            |          |      |      |        |     |         |              |             | ENG: DJN | DATE:       | CHK:             | DATE:      | ENERGY CURRLY                                          |                    | REV |
|    |                      |              |            |          |      |      |        |     |         |              |             | PM: DJN  | DATE:       | PROJ. NO         |            | ENERGY SUPPLY ENGINEERING & CONSTRUCTION               | NH-276086- 3-2     |     |
| 1  |                      |              |            |          |      |      |        |     |         |              |             | APVD:    | DATE:       | SCALE:1"         | = 3000'-0" | ENGINEERING & CONSTRUCTION                             |                    | 0   |

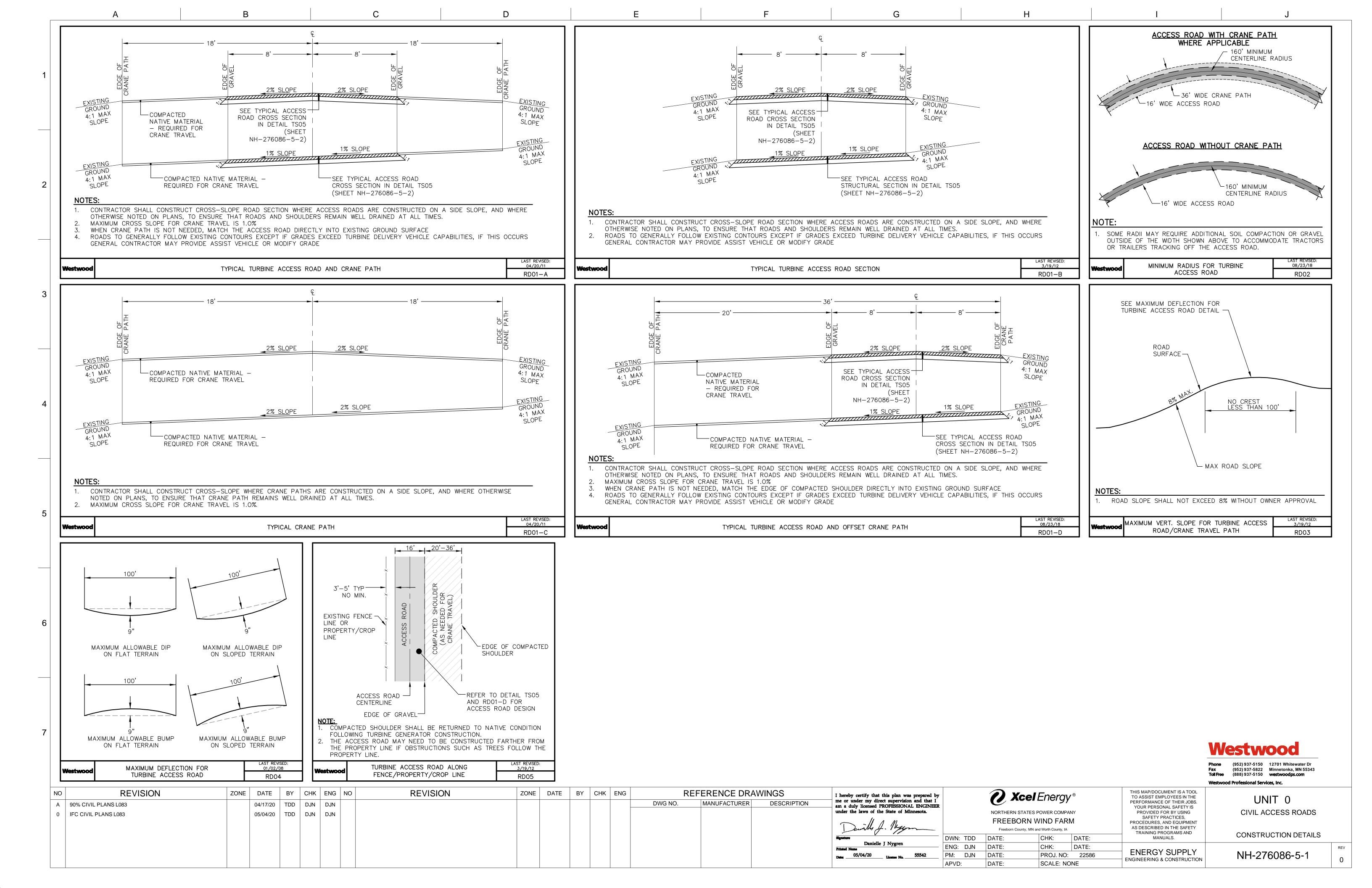


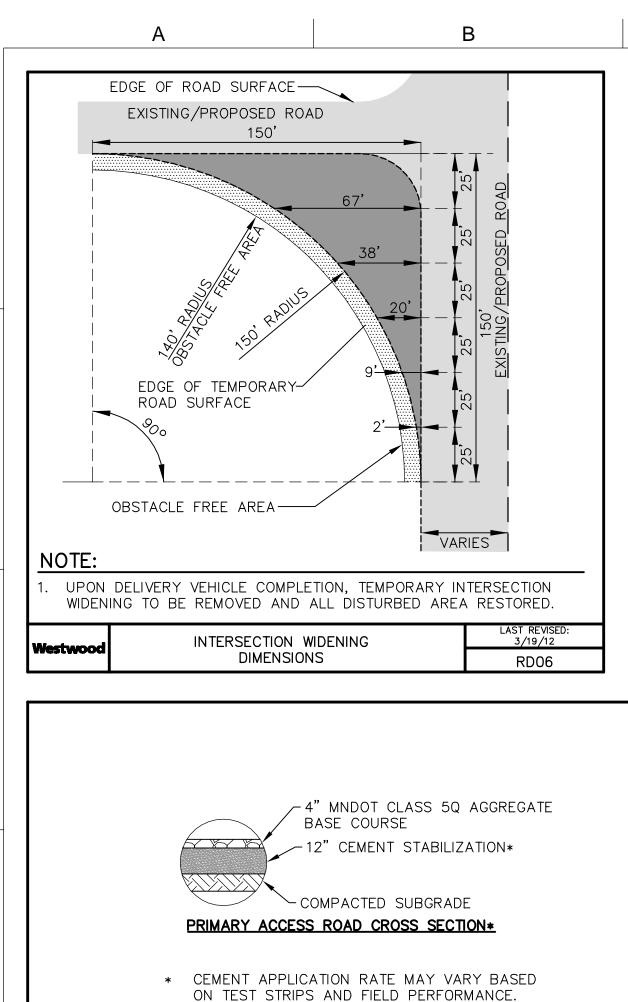
/510th St/ \_T-102 ♥ T-116 T-118 SEE SHEET 4-1FOR T-107 T-108 T-109 T-110 T-111 DELIVERIES ORIGINATING T-112 T-113 IN MN/ T-121 → T-123 → /500th St/ PROPOSED BATCH PLANT → 500th St T-147 T-146 T-185 T-162 490th St PROPOSED T-485th St T-158 T-159 T-152 485th St/ ALT-172 T-154 🗨 T-155 480th St T-194 480th St T-195 LIMPROVEMENTS TO STAY WITHIN THE ROW T-189 T-169 T-183 T-179 Northwood 470th St State Hwy 105



| ITEM                      | LENGTH   |
|---------------------------|----------|
| BITUMINOUS DELIVERY ROUTE | 7.00 mi  |
| GRAVEL DELIVERY ROUTE     | 21.20 mi |



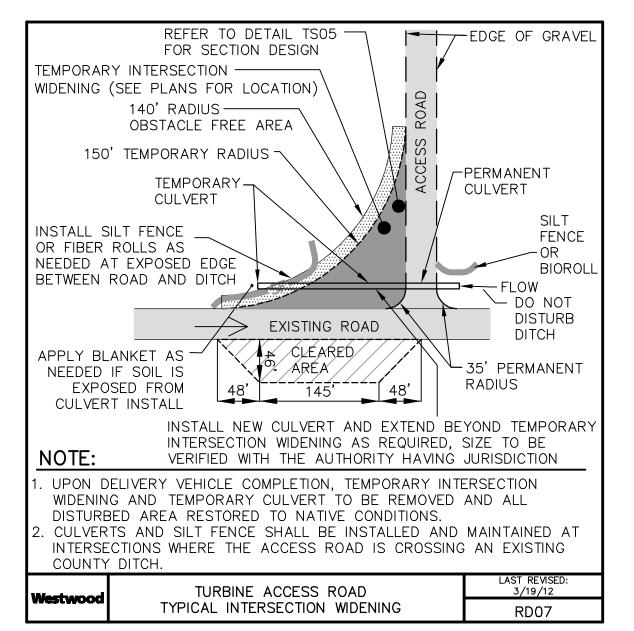

 Phone
 (952) 937-5150
 12701 Whitewater Dr

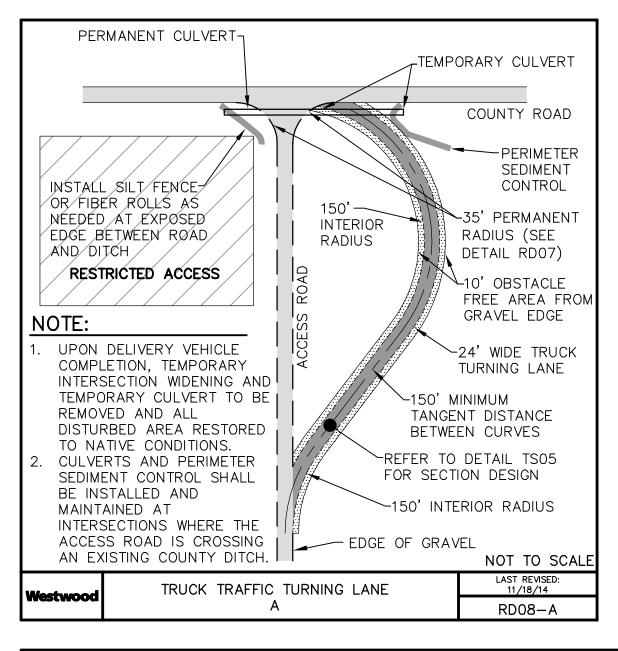

 Fax
 (952) 937-5822
 Minnetonka, MN 55343

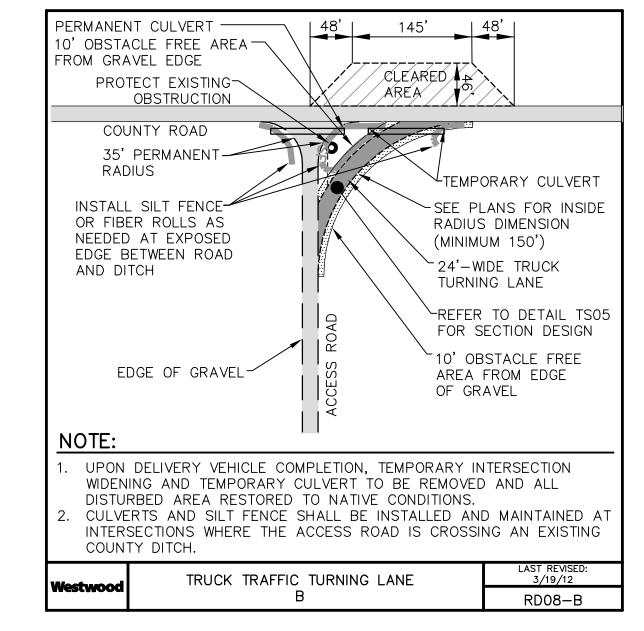
 Toll Free
 (888) 937-5150
 westwoodps.com

|                        |        |      |       |     |     |        |       |      |      |     |       |         |         |              |             |          |       |                     |                  | w                                                                 | estwood Professional Services, Inc. |
|------------------------|--------|------|-------|-----|-----|--------|-------|------|------|-----|-------|---------|---------|--------------|-------------|----------|-------|---------------------|------------------|-------------------------------------------------------------------|-------------------------------------|
| NO REVIS               | ON ZON | NE D | ATE   | BY  | СНК | ENG NO | REVIS | SION | ZONE | DAT | ГЕ ВҮ | CHK ENG | R       | FERENCE DRA  | VINGS       |          | 2     | <b>Xcel</b> Ene     | erav®            | THIS MAP/DOCUMENT IS A TOOL TO ASSIST EMPLOYEES IN THE            | LINIT                               |
| A 90% CIVIL PLANS L083 |        | 04/  | 17/20 | TDD | DJN | DJN    |       |      |      |     |       |         | DWG NO. | MANUFACTURER | DESCRIPTION |          |       | NOGI LIN            | 99               | PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS                | UNIT 0                              |
| 0 IFC CIVIL PLANS L083 |        | 05/  | 04/20 | TDD | DJN | DJN    |       |      |      |     |       |         |         |              |             |          |       | N STATES POWER      |                  | PROVIDED FOR BY USING SAFETY PRACTICES, PROCEDURES, AND EQUIPMENT | CIVIL ACCESS ROADS                  |
|                        |        |      |       |     |     |        |       |      |      |     |       |         |         |              |             |          |       | Freeborn County, MN |                  | AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND                  | DELIVERY FLOW PLAN - IA             |
|                        |        |      |       |     |     |        |       |      |      |     |       |         |         |              |             | DWN: TDD | DATE: | СНК                 | : DATE:          | MANUALS.                                                          | DELIVERT LEOW LAIN-IA               |
|                        |        |      |       |     |     |        |       |      |      |     |       |         |         |              |             | ENG: DJN | DATE: | СНК                 | : DATE:          | EMEDON OF DDIN                                                    |                                     |
|                        |        |      |       |     |     |        |       |      |      |     |       |         |         |              |             | PM: DJN  | DATE: | PRC                 | J. NO: 22586     | ENERGY SUPPLY                                                     | NH-276086- 4-2                      |
|                        |        |      |       |     |     |        |       |      |      |     |       |         |         |              |             | APVD:    | DATE: | SCA                 | LE:1" = 3000'-0" | ENGINEERING & CONSTRUCTION                                        |                                     |

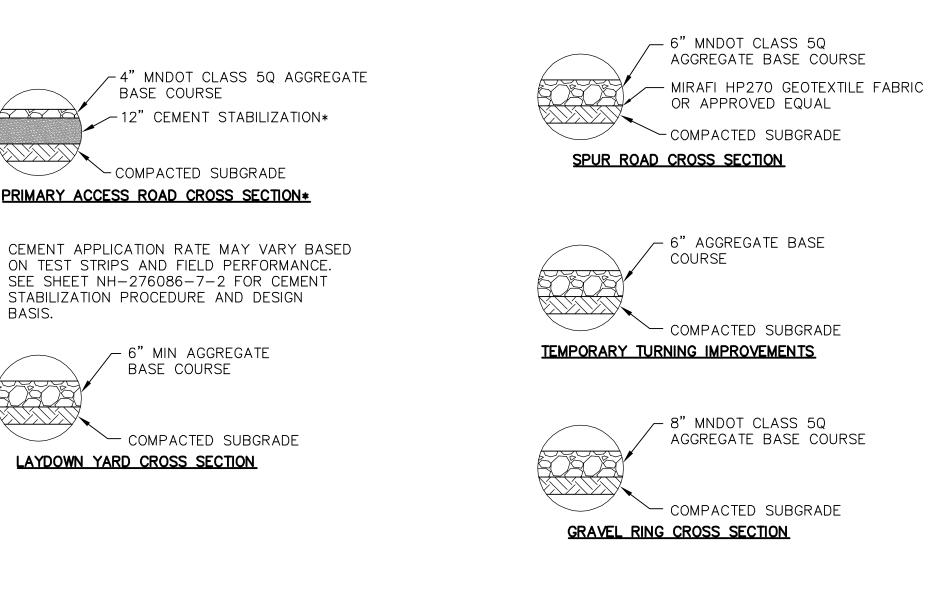
460th St





NH-276086-7-1 FOR TESTING REQUIREMENTS AND SPECIFICATIONS.

NOTE:

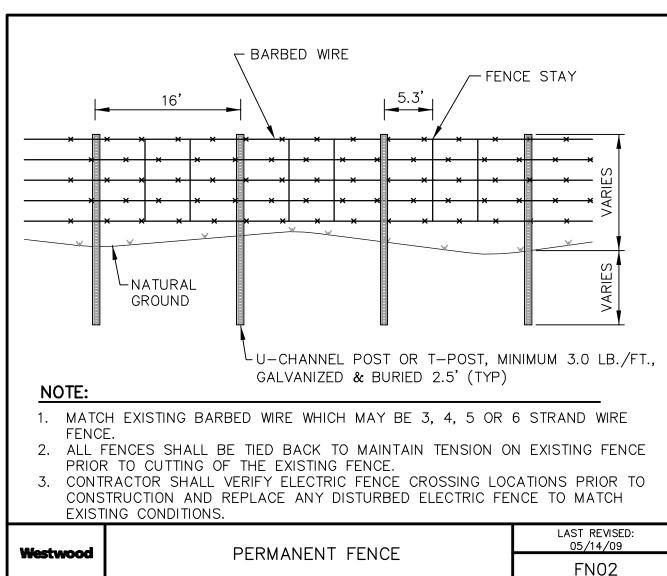

Westwood

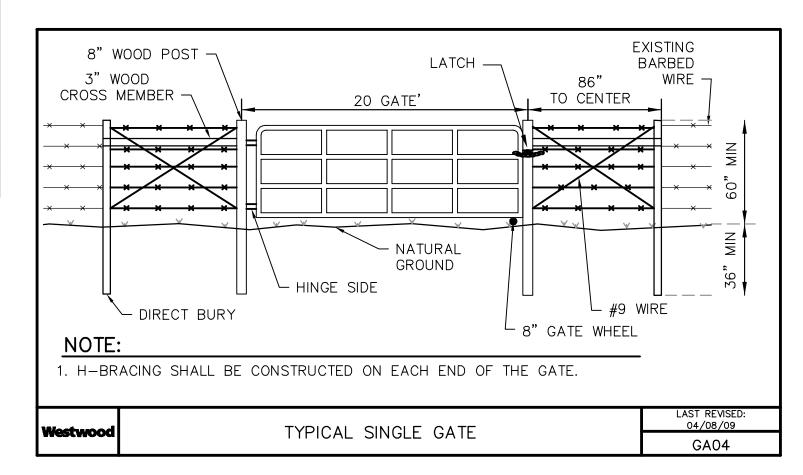


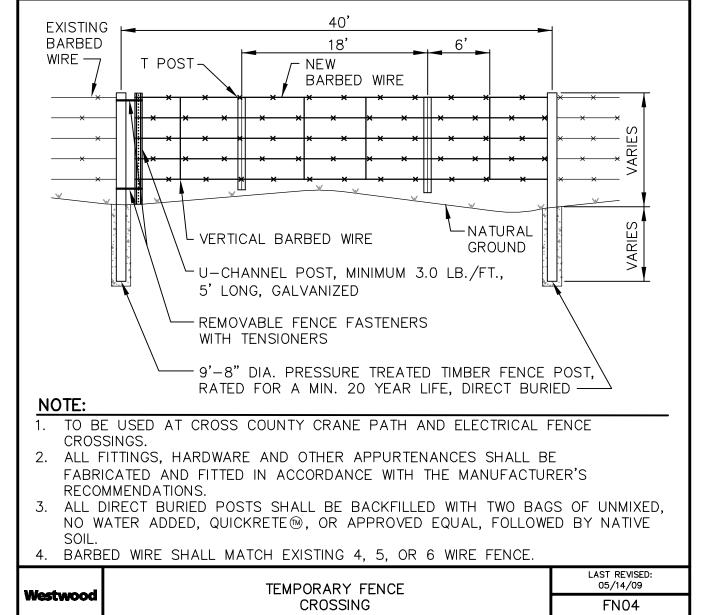




NOTE — THE ACCESS ROAD WIDTH AND RADIUS CONNECTING TO PUBLIC ROADS SHALL BE VERIFIED WITH FREEBORN/WORTH COUNTY BEFORE INSTALLATION.





STRUCTURAL SECTIONS SHOWN ARE THE MINIMUM THICKNESS REQUIREMENTS DURING NORMAL FIELD CONDITIONS. THE SECTIONS MAY


TYPICAL STRUCTURAL CROSS SECTIONS

NEED TO BE INCREASED BASED ON ACTUAL FIELD CONDITIONS AT THE TIME OF CONSTRUCTION. CONDITIONS INCLUDE BUT ARE NOT

LIMITED TO CONSTRUCTION DURING THE FREEZE/THAW CYCLE, UNUSUALLY WET PERIODS, OR IN LOW/WET AREAS. SEE SHEET



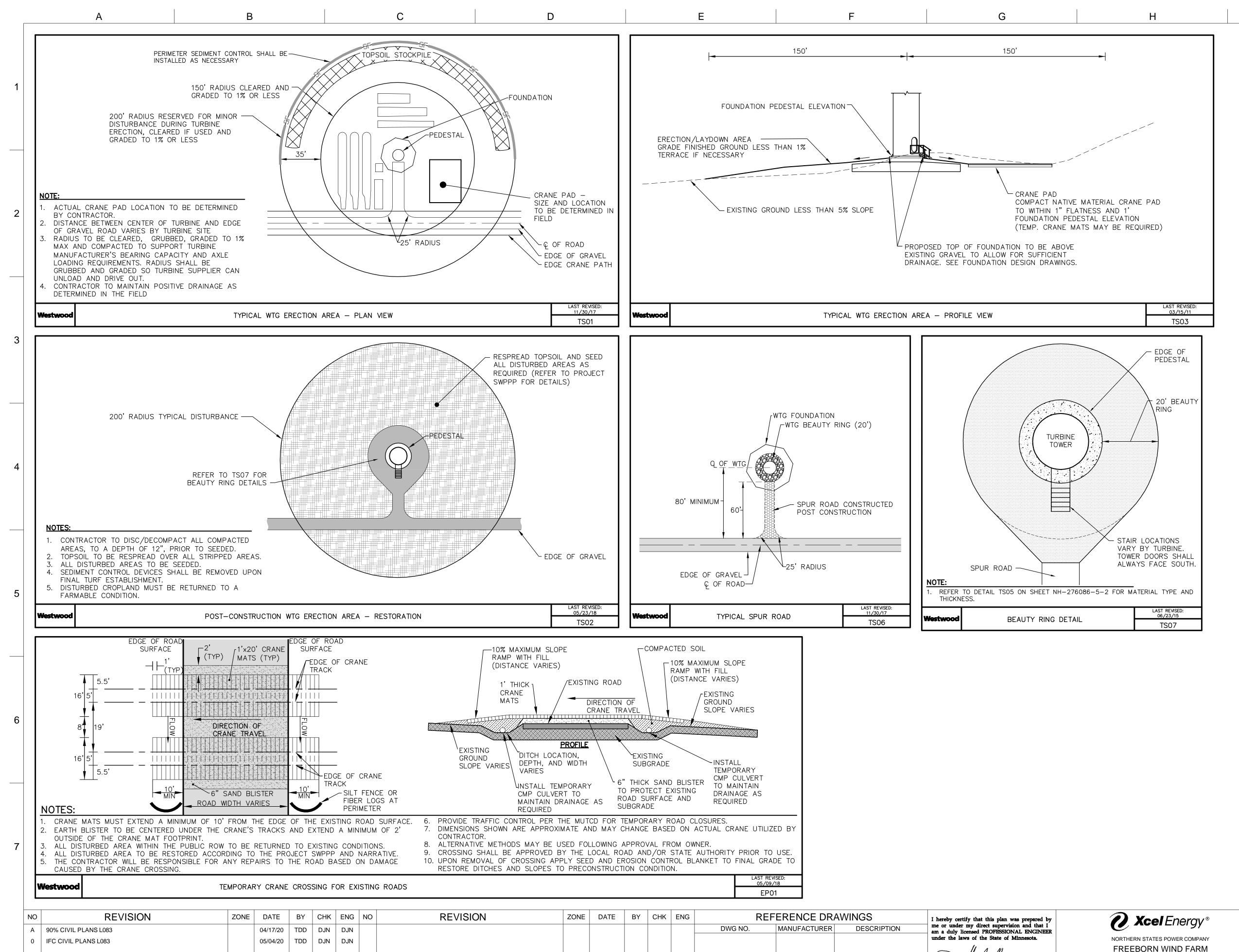






Westwood Professional Services, Inc.

Phone (952) 937-5150 12701 Whitewater Dr Fax (952) 937-5822 Minnetonka, MN 55343 Toll Free (888) 937-5150 westwoodps.com


| NC | REVISION             | ZONE DATE | BY  | СНК | ENG | NO | REVISION ZONE | DATE | BY | CHK ENG | REFERENCE DRAWINGS               | I hereby certify that this plan was prepared by                                       |
|----|----------------------|-----------|-----|-----|-----|----|---------------|------|----|---------|----------------------------------|---------------------------------------------------------------------------------------|
| А  | 90% CIVIL PLANS L083 | 04/17/20  | TDD | DJN | DJN |    |               |      |    |         | DWG NO. MANUFACTURER DESCRIPTION | me or under my direct supervision and that I am a duly licensed PROFESSIONAL ENGINEER |
| 0  | IFC CIVIL PLANS L083 | 05/04/20  | TDD | DJN | DJN |    |               |      |    |         |                                  | under the laws of the State of Minnesota.                                             |
|    |                      |           |     |     |     |    |               |      |    |         |                                  | Daville J. Mygon                                                                      |
|    |                      |           |     |     |     |    |               |      |    |         |                                  | Signature DWN:                                                                        |
|    |                      |           |     |     |     |    |               |      |    |         |                                  | Danielle J Nygren  Printed Name  ENG:                                                 |
|    |                      |           |     |     |     |    |               |      |    |         |                                  | Date: 05/04/20 License No. 55542 PM:                                                  |
|    |                      |           |     |     |     |    |               |      |    |         |                                  | APVD:                                                                                 |

LAST REVISED: 08/23/18

TS05

|        |     | NORTHERN STATES F FREEBORN W Freeborn County, MN an | POWER COMPAI | NY    | THIS MAP/DOCUMENT IS A TOOL TO ASSIST EMPLOYEES IN THE PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS PROVIDED FOR BY USING SAFETY PRACTICES, PROCEDURES, AND EQUIPMENT AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND | UNIT 0 CIVIL ACCESS ROADS |     |  |  |  |
|--------|-----|-----------------------------------------------------|--------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|--|--|--|
| DWN: 1 | TDD | DATE:                                               | CHK:         | DATE: | MANUALS.                                                                                                                                                                                                                     | CONSTRUCTION DETAILS      |     |  |  |  |
| ENG: [ | DJN | DATE:                                               | CHK:         | DATE: | ENEDOV OUDDLY                                                                                                                                                                                                                |                           | REV |  |  |  |
| PM: [  | DJN | DATE:                                               | PROJ. NO:    | 22586 | ENERGY SUPPLY ENGINEERING & CONSTRUCTION                                                                                                                                                                                     | NH-276086-5-2             |     |  |  |  |
| APVD:  |     | DATE:                                               | SCALE: NO    | NE    | ENGINEERING & CONSTRUCTION                                                                                                                                                                                                   | ·                         |     |  |  |  |





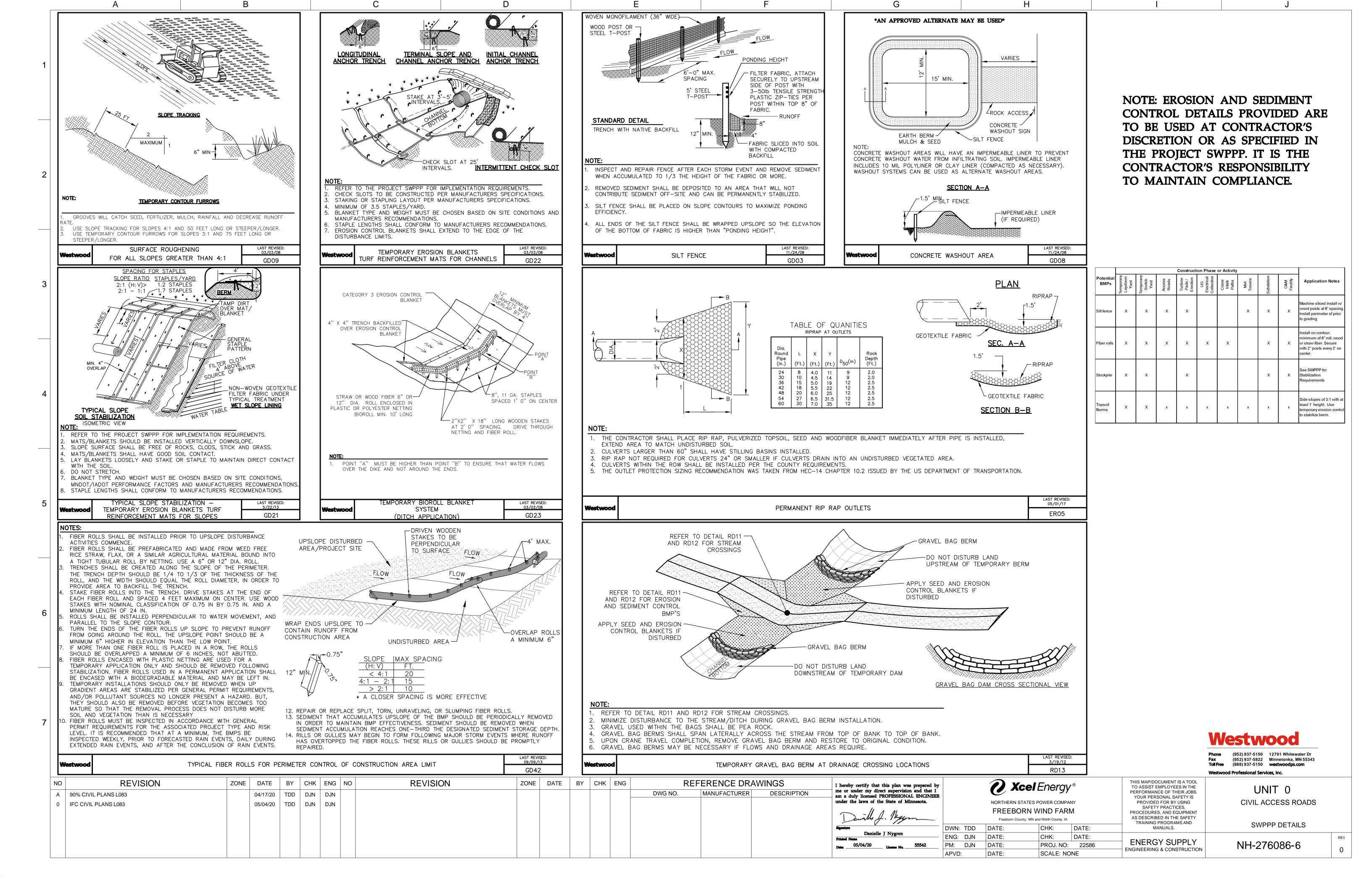
(888) 937-5150 westwoodps.com Westwood Professional Services, Inc. THIS MAP/DOCUMENT IS A TOOL TO ASSIST EMPLOYEES IN THE UNIT 0 PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS CIVIL ACCESS ROADS PROVIDED FOR BY USING SAFETY PRACTICES, CONSTRUCTION DETAILS

(952) 937-5150 12701 Whitewater Dr

(952) 937-5822 Minnetonka, MN 55343

PROCEDURES, AND EQUIPMENT AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND CHK: MANUALS. DWN: TDD DATE: DATE: ENG: DJN DATE: CHK: DATE: **ENERGY SUPPLY** NH-276086-5-4 PROJ. NO: 22586 PM: DJN DATE:

SCALE: NONE


**ENGINEERING & CONSTRUCTION** 

Danielle J Nygren

APVD:

DATE:

05/04/20



## ROAD DESIGN PARAMETERS

- 1. ACCESS ROADS HAVE BEEN DESIGNED TO ACCOMMODATE LIGHT DUTY TRUCKS (PICKUP TRUCKS AND MAINTENANCE VEHICLES) FOR LOW VOLUME USE IN NORMAL OPERATING CONDITIONS AS WELL AS HEAVY DUTY CONSTRUCTION TRAFFIC UNDER DRY CONDITIONS. THE ROAD DESIGN SPECIFIED IS NOT INTENDED FOR ALL WEATHER USE FOR HEAVY DUTY CONSTRUCTION LOADS. 2. ROAD MAINTENANCE CAN BE EXPECTED OVER THE LIFE OF THE PERMANENT FACILITY.
- 1 3. ACCESS ROADS HAVE BEEN DESIGNED IN ACCORDANCE TO VESTAS CIVIL WORKS SPECIFICATION.

## **PRODUCTS**

- 1. AGGREGATE BASE FOR PERMANENT APPLICATIONS SHALL CONSIST OF MNDOT CLASS 5Q AGGREGATE BASE COURSE. AGGREGATE FOR TEMPORARY APPLICATIONS SHALL CONSIST OF MNDOT CLASS 5 OR 5Q (AND IN CONFORMANCE WITH THE GRADATION TABLE 1 AND TABLE 2). AGGREGATE GRADATIONS SHALL BE SUBMITTED TO ENGINEER FOR REVIEW.
- CEMENT STABILIZED SUBGRADE SHALL CONSIST OF TYPE 1 OR TYPE 2 CEMENT MIXED WITH NATIVE MATERIAL.
- 3. ROAD SHOULDERS AND CRANE PADS SHALL CONSIST OF COMPACTED NATIVE SOILS.
- 4. CULVERTS: ACCESS ROAD CULVERTS IN MINNESOTA SHALL MEET THE MINIMUM SPECIFICATIONS SET FORTH BY THE MINNESOTA DEPARTMENT OF TRANSPORTATION AND/OR FREEBORN COUNTY. ACCESS ROAD CULVERTS IN IOWA SHALL MEET THE MINIMUM SPECIFICATIONS SET FORTH BY THE IOWA DEPARTMENT OF TRANSPORTATION AND/OR WORTH COUNTY. ALL PERMANENT CULVERTS ARE PLANNED TO BE A MINIMUM 18" DIAMETER AND MANUFACTURED OF 16-GAGE CORRUGATED METAL PIPE WITH NO END TREATMENTS UNLESS NOTED OTHERWISE. TEMPORARY CRANE CROSSING CULVERTS 54" AND LARGER SHALL BE A MINIMUM 12-GAGE CORRUGATED METAL PIPE. SEE SHEET 2-2 FOR CULVERT SIZING.
- GEOTEXTILE FABRIC: MIRAFI HP270 OR APPROVED EQUAL. 6. FILL PLACEMENT: NATIVE SOIL USED TO CONSTRUCT FILL PLACEMENT BELOW ROADS, CRANE WALKS, LAYDOWN YARD AND WTG ERECTION AREAS.

### **EXECUTION**

2. TOPSOIL STRIPPING

SUBGRADE

- CLEARING AND GRUBBING
- A. THE CONTRACTOR SHALL BE REQUIRED TO GRUB ALL TREES, STUMPS, BRUSH, AND DEBRIS WITHIN THE GRADING AREAS SHOWN ON THE PLANS. GRUBBING INCLUDES REMOVAL OF ALL PLANT MATERIAL GREATER THAN 2" INCLUDING STUMPS, BRANCHES, ROOTS, ETC. TO A DEPTH BELOW THE FINAL SUBGRADE. THE CONTRACTOR IS TO REMOVE ONLY THOSE TREES WHICH ARE DESIGNATED BY THE OWNER'S REPRESENTATIVE FOR REMOVAL, AND SHALL EXERCISE EXTREME CARE AROUND EXISTING TREES TO BE SAVED.
- A. TOPSOIL, INCLUDING ROOTS LARGER THAN 2" AND LARGE ROOT MASSES, SHALL BE STRIPPED FROM ALL ROADWAY AND FOUNDATION AREAS UP TO 8". TOPSOIL SHALL NOT BE STRIPPED OUTSIDE OF THE DESIGNATED DISTURBANCE AREAS.
- B. ANY TOPSOIL THAT HAS BEEN STRIPPED SHALL BE STOCKPILED FOR POST CONSTRUCTION REVEGETATION. ALL TOPSOIL SHALL BE REDISTRIBUTED TO THE LAND OWNER'S PROPERTY OF WHERE IT ORIGINATED FROM.
- A. FILL PLACEMENT SHALL CONSIST OF THE PLACING OF SUITABLE FILL MATERIAL, AFTER TOPSOIL STRIPPING, ABOVE THE
- EXISTING GRADE. GENERALLY, SIDE SLOPES SHALL BE CONSTRUCTED AT FOUR FOOT HORIZONTAL TO ONE FOOT VERTICAL, WITH SOME LOCATIONS THROUGHOUT THE PROJECT WITH SLOPES OF TWO FEET HORIZONTAL TO ONE FOOT VERTICAL. THE MATERIAL FOR FILL CONSTRUCTION SHALL BE OBTAINED FROM THE ACCESS ROAD/TURBINE EXCAVATION (SEE GEOTECHNICAL REPORT FOR RESTRICTIONS), OR ANY SUITABLE, APPROVED SOIL OBTAINED ONSITE/OFFSITE BY CONTRACTOR, AS DIRECTED OR APPROVED BY THE ENGINEER. THIS MATERIAL SHALL BE PLACED IN LIFTS NOT TO EXCEED 12" AND CONSTRUCTED TO 95% OF THE MAXIMUM DRY DENSITY AND WITHIN 2% OF OPTIMUM MOISTURE CONTENT, AS DETERMINED BY THE STANDARD PROCTOR (AASHTO T99).
- B. SIDE SLOPES GREATER THAN 4:1 WILL NOT BE PERMITTED, UNLESS OTHERWISE NOTED ON THE PLAN.
- C. FILL SLOPES SHALL BE BENCHED INTO THE EXISTING SLOPE TO PREVENT MOVEMENT BETWEEN THE FILL AND NATIVE SOILS. BENCHES SHOULD BE APPROVED BY THE GEOTECHNICAL ENGINEER PRIOR TO FILL PLACEMENT. POSITIVE DRAINAGE IS REQUIRED AT BENCHED AREAS AND AT THE TOE OF FILL SLOPES TO REMOVE SURFACE WATER.
- A. SUBGRADE PREPARED AT GRADE OR IN CUT REQUIRES SCARIFICATION AND RECOMPACTION TO A DEPTH OF 12" OR
- B. ACCESS ROAD CROSS SLOPES SHOWN IN THE PLANS ARE MEANT AS A GUIDE. ACCESS ROAD CROSS SLOPES MAY RANGE FROM 1% - 2%, CHECK WITH THE ENGINEER IF THE CROSS SLOPE FALLS OUTSIDE OF THIS RANGE.ACCESS ROADS BEING UTILIZED FOR CRANE TRAVEL SHOULD HAVE A MAX CROSS SLOPE OF 2%.

## STORM WATER DESIGN PARAMETERS

- 1. SEE SHEET NH-276086-2 FOR CULVERT SIZING AND DESIGN PARAMETERS. CULVERTS SHALL BE MINIMUM 18" CORRUGATED METAL PIPE. ALL TEMPORARY PORTIONS OF THE INSTALLED CULVERTS SHALL BE REMOVED UPON COMPLETION OF THE
- 2. IT IS EXPECTED THAT CULVERTS WILL BE OVERTOPPED DURING SOME STORMS AND MAINTENANCE WILL BE REQUIRED THROUGH THE LIFE OF THE PROJECT.
- 3. WHEN INSTALLING DRAINAGE CULVERTS THE CONTRACTOR SHALL USE JUDGMENT IN SETTING THE FLOW LINE ELEVATIONS AND CULVERT LONGITUDINAL SLOPE. TYPICALLY THE FLOW LINE ELEVATIONS AND LONGITUDINAL SLOPE OF THE CULVERT SHOULD MATCH THE NATURAL GROUND ELEVATIONS AND SLOPE TO ENSURE POSITIVE DRAINAGE. WHEN POSSIBLE, ALL CULVERTS SHOULD BE PLACED AT A MINIMUM 0.5% GRADE.
- ANTICIPATED CULVERT CROSSINGS ARE SHOWN ON THE CONSTRUCTION PLAN, ADDITIONAL CULVERTS MAY NEED TO BE INSTALLED IN AREAS WHERE CONCENTRATED FLOW IS EXPECTED DUE TO CONSTRUCTION ACTIVITIES.
- 5. CONSTRUCT DRAINAGE CROSSINGS TO MAINTAIN EXISTING FLOW CHARACTERISTICS OF THE FEATURES. FEATURES SHALL BE GRADED TO PRECONSTRUCTION CONTOURS.

| SIEVE SIZE         | PERCENT PASSING |
|--------------------|-----------------|
| 2"                 | _               |
| 1 <mark>1</mark> " | 100             |
| 1"                 | _               |
| 3/4"               | 70–100          |
| 3/8"               | 45-90           |
| NO. 4              | 35-80           |
| NO. 10             | 20-65           |
| NO. 40             | 10-35           |
| NO. 200            | 3–10            |

L.A ABRASION (% MAX) = 40%MAX SHALE. IF NO. 200  $\leq$  7% BY MASS = 10% MAX SHALE. IF NO. 200 > 7% BY MASS = 7%MINIMUM CRUSHING REQUIREMENT = 10%

GRADATION HAS BEEN OBTAINED FROM THE 2018 MINNESOTA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATION BOOK, SECTION 3138.2.

|                    | T CLASS 5Q BASE COURSE -<br>CALLY SOURCED |
|--------------------|-------------------------------------------|
| SIEVE SIZE         | PERCENT PASSING                           |
| 2"                 | 100                                       |
| 1 <mark>1</mark> " | _                                         |
| 1"                 | 65-95                                     |
| 3/4"               | 45-85                                     |
| 3/8"               | 35-70                                     |
| NO. 4              | 15-45                                     |
| NO. 10             | 10-30                                     |
| NO. 40             | 5–25                                      |
| NO. 200            | 0-10                                      |
|                    |                                           |

TABLE O. MAIDOT OLACE FO DACE COLIDER

L.A ABRASION (% MAX) = 40%MAX SHALE. IF NO. 200  $\leq$  7% BY MASS = 10% MAX SHALE, IF NO. 200 > 7% BY MASS = 7%MINIMUM CRUSHING REQUIREMENT = 10%

GRADATION HAS BEEN OBTAINED FROM THE 2018 MINNESOTA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATION BOOK, SECTION 3138.2.

## TESTING:

 TESTING SHALL BE PERFORMED BY A DESIGNATED INDEPENDENT TESTING AGENCY. 2. SUBMIT ONE SET OF TESTING AND INSPECTION RECORDS SPECIFIED TO THE CIVIL ENGINEER OF RECORD.

#### <u>DEFINITIONS:</u>

1. PROOF ROLLING:

SHALL BE PERFORMED IN THE PRESENCE OF THE GEOTECHNICAL ENGINEER OR QUALIFIED GEOTECHNICAL REPRESENTATIVE USING A FULLY LOADED TANDEM AXLE DUMP TRUCK OR WATER TRUCK WITH A MINIMUM GROSS WEIGHT OF 25 TONS OR A FULLY LOADED BELLY DUMP WITH AN EQUIVALENT AXLE LOADING. PROOF-ROLLING ACCEPTANCE STANDARDS INCLUDE NO RUTTING GREATER THAN 1.5 INCHES FOR NON-STABILIZED SUBGRADE AND 0.75" FOR CEMENT STABILIZED SUBGRADES, AND NO "PUMPING" OF THE SOIL BEHIND THE LOADED TRUCK.

- SHALL BE CONDUCTED IN ACCORDANCE WITH ASTM C-136
- 3. STANDARD PROCTOR:
- SHALL BE DETERMINED IN ACCORDANCE WITH ASTM D-698
- 4. ATTERBERG LIMITS:
- SHALL BE DETERMINED IN ACCORDANCE WITH ASTM D-4318 T
- 5. MOISTURE DENSITY (NUCLEAR DENSITY):
- SHALL BE DONE IN ACCORDANCE WITH ASTM D-6938
- 6. DYNAMIC CONE PENETROMETER (DCP) TESTING: SHALL BE DONE IN ACCORDANCE WITH ASTM D6951-18
- 7. DIRECT SHEAR TEST:
  - SHALL BE DONE IN ACCORDANCE WITH ASTM D3080

### **REQUIREMENTS:**

- 1. FILL PLACEMENT:
  - A. SOILS USED AS FILL MATERIAL SHALL BE TESTED FOR MOISTURE CONTENT AND PROCTOR TESTS.
- B. WHERE FILL CONSTRUCTION REQUIRES MORE THAN 12 INCHES OF FILL PLACEMENT, COMPACT EACH LIFT TO A MINIMUM OF 95 PERCENT OF THE MATERIAL'S MAXIMUM STANDARD PROCTOR DRY DENSITY.
- 2. COMPACTED SUBGRADE (CEMENT STABILIZED):
  - A. SEE SHEET NH-276086-7-2 FOR TESTING REQUIREMENTS AND PROCEDURE.
- COMPACTED SUBGRADE (NON-CEMENT STABILIZED):
- A. THE ENTIRE SUBGRADE SHALL BE PROOF-ROLLED PRIOR TO THE PLACEMENT OF THE AGGREGATE BASE TO IDENTIFY AREAS OF UNSTABLE SUBGRADE.
- B. IF A PASSING PROOF-ROLL CANNOT BE ACHIEVED THE FOLLOWING ALTERNATIVES MAY BE IMPLEMENTED:
  - a. SCARIFY, DRY, AND RECOMPACT SUBGRADE
  - b. REMOVE UNSUITABLE MATERIAL AND REPLACE WITH SUITABLE MATERIAL
  - c. INCREASE AGGREGATE BASE THICKNESS
- d. USE AN APPROVED GEOTEXTILE FABRIC
- 4. AGGREGATE BASE:
  - A. AGGREGATE BASE SHALL BE PROOF-ROLLED OVER THE ENTIRE LENGTH. IF PROOF ROLLING DETERMINES THAT THE ROAD IS UNSTABLE, ADDITIONAL AGGREGATE SHALL BE ADDED UNTIL THE UNSTABLE SECTION IS ABLE TO PASS A PROOF ROLL.
- B. PROVIDE 1 SIEVE ANALYSIS PER 2500 CY OF ROAD BASE PLACED.
- 5. CRANE PADS AND CRANE PATHS:
- A. CRANE PAD TESTING REQUIREMENTS ARE PENDING BASED ON CRANE PICK PLANS PROVIDED BY THE CONTRACTOR.
- B. CRANE PATH TESTING SHALL BE THE CONTRACTORS MEANS AND METHODS.
- 8. TEMPORARY CRANE DITCH CROSSINGS (NATIVE SUBGRADE):
- A. THE NATIVE SUBGRADE AT OR NEAR THE BOTTOM OF EACH WATERWAY SHOULD BE TESTED PRIOR TO CONSTRUCTION WITH A DYNAMIC CONE PENETROMETER (DCP)
  - a. DCP TESTING SHOULD BE PERFORMED AT A MINIMUM OF FOUR (4) LOCATIONS PER CROSSING, WITH 2 TESTS PER SIDE OF THE CROSSING
  - b. TESTING SHOULD EXTEND TO A DEPTH OF 3 FEET BELOW THE GROUND SURFACE
  - c. THE MINIMUM REQUIRED DCP READING IS 1.5 INCHES/BLOW AVERAGED THROUGHOUT THE ENTIRE 3 FOOT DEPTH. THIS CORRESPONDS TO AN UNDRAINED SHEAR STRENGTH OF 650 PSF
  - d. CONTACT WESTWOOD IF THE NATIVE SUBGRADE DOES NOT MEET THE REQUIRED SUBGRADE DCP CRITERIA.
- TEMPORARY CRANE DITCH CROSSINGS (FILL MATERIAL):

MOISTURE DENSITY TEST (NUCLEAR DENSITY)

DIRECT SHEAR TEST

- A. THE BACKFILL MATERIAL PROVIDED IN SUBMITTAL #WESTWOOD 002 SHOULD BE COMPACTED TO 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY. COMPACTED LIFTS SHALL NOT EXCEED 12".
- B. LABORATORY DIRECT SHEAR TESTING SHALL BE PERFORMED ON THE BACKFILL MATERIAL TO CONFIRM AN INTERNAL FRICTION ANGLE OF 38 DEGREES OR GREATER.

#### TABLE 3: TESTING SCHEDULE SUMMARY LOCATION FREQUENCY FILL PLACEMENT **PROCTOR** 1 PER MAJOR SOIL TYPE MOISTURE DENSITY TEST (NUCLEAR DENSITY) 1 PER LIFT PER 5000 SF OF FILL PLACED OR 1 PER 500 LF OF ROAD COMPACTED SUBGRADE SEE SHEET NH-276086-7-2 SEE SHEET NH-276086-7-2 (CEMENT STABILIZED): COMPACTED SUBGRADE PROOF-ROLL (NON-CEMENT ENTIRE AREA STABILIZED): AGGREGATE BASE PROOF-ROLL ENTIRE AREA SIEVE ANALYSIS, LL, PL, AND L.A 1 PER 2,500 CY ABRASION TEMP CRANE DITCH DCP 4 TESTING LOCATIONS PER CROSSING, WITH 2 TESTS PER SIDE OF THE CROSSING (NATIVE CROSSING (TESTS TAKEN AT BOTTOM OF WATERWAY) SUBGRADE): TEMP CRANE DITCH

1 PER LIFT

1 PER FILL MATERIAL TYPE

## GENERAL NOTES:

- THE GROUND SURFACE CONTOURS (AT TWO-FOOT VERTICAL INTERVALS) AND ELEVATIONS ARE BASED ON LIDAR DATA OBTAINED FROM THE PUBLIC DATA SETS FROM THE STATES OF MN AND IA. THE ELEVATIONS AND CONTOURS BASED ON THE LIDAR DATA WERE PREPARED FROM AERIAL PHOTOGRAPHY DATA, AND NOT ACTUAL FIELD SURVEYING. AS SUCH, THE ACCURACY OF THE ELEVATIONS AND CONTOURS IS NOT AS HIGH AS INFORMATION GATHERED USING CONVENTIONAL FIELD SURVEYING PROCEDURES. THE CONTRACTOR MAY FIND THAT GROUND ELEVATIONS DETERMINED DURING FIELD STAKING WILL VARY FROM THE GROUND ELEVATIONS SHOWN ON THE DRAWINGS. IF MAJOR DISCREPANCIES ARE FOUND, THE OWNER AND ENGINEER SHALL BE NOTIFIED.
- 2. WHERE SECTION OR SUBSECTION MONUMENTS ARE ENCOUNTERED, THE OWNER SHALL BE NOTIFIED BEFORE SUCH MONUMENTS ARE REMOVED. THE CONTRACTOR SHALL PROTECT AND CAREFULLY PRESERVE ALL PROPERTY MARKERS AND MONUMENTS UNTIL THE OWNER, AN AUTHORIZED SURVEYOR OR AGENT HAS WITNESSED OR OTHERWISE REFERENCED THEIR LOCATION.
- 3. EFFORTS SHALL BE MADE TO MINIMIZE SOIL DISTURBANCE TO AREAS OUTSIDE OF THE ROAD GRADING LIMITS, CRANE PATHS,
- 4. FINALIZE GRADING AROUND THE BASE OF TURBINES IN ACCORDANCE WITH DETAIL TS-02 AND TS-03.
- 5. GRADE ALL PROPOSED ROADS TO A MAXIMUM SLOPE OF 8%. IF 8% SLOPE CANNOT BE ACHIEVED, THE CONTRACTOR MAY UTILIZE ASSIST VEHICLES FOR THE PURPOSE OF DELIVERIES. GRADE ALL PROPOSED CRANE PATHS TO A MAXIMUM OF 8% UNLESS OTHERWISE NOTED IN PLAN SHEETS.
- 6. ANY FACILITIES REMOVED TO ALLOW FOR CONSTRUCTION (MAILBOXES, SIGNS, FENCES, ETC.) SHALL BE REPLACED BY THE CONTRACTOR IN A CONDITION AS GOOD AS EXISTING.
- 7. THE CONTRACTOR IS RESPONSIBLE FOR MAINTAINING DRAINAGE THROUGHOUT THE CONSTRUCTION OF THIS PROJECT. CONSTRUCTION ACTIVITIES SHALL NOT BLOCK THE NATURAL OR MANMADE CREEKS OR DRAINAGE SWALES CAUSING RAINWATER
- 8. WHILE BUILDING THE ROADS AND EXCAVATING THE TURBINE FOUNDATIONS, EXCESS SOIL WILL RESULT. THE CONTRACTOR SHALL DISPOSE OF THIS EXCESS SOIL IN AN APPROVED MANNER. EXCESS TOPSOIL SHALL BE DISTRIBUTED INTO A THIN LAYER ON LAND IMMEDIATELY ADJACENT TO WHERE THE TOPSOIL ORIGINATED. ALL EXCESS TOPSOIL TO BE WASTED ONSITE. WHILE DOING SO THE CONTRACTOR SHALL AVOID CAUSING RIDGES OR MOUNDS THAT WOULD MAKE IT DIFFICULT FOR STORM WATER RUNOFF TO DRAIN. THE FINAL SURFACE OF THE DISTURBED TOPSOIL SHALL BE SMOOTH AND FOLLOW THE NATURAL CONTOUR OF THE LAND.

TO POND. DEPENDING ON FIELD CONDITIONS, ADDITIONAL CULVERTS IN EXCESS OF THOSE ON THE PLANS MAY BE REQUIRED.

- 9. THE CONTRACTOR SHALL NOTIFY MINNESOTA/IOWA 811 AT LEAST 48 HOURS BEFORE EXCAVATION ACTIVITIES COMMENCE.
- 10. TEMPORARY INTERSECTION WIDENING SHALL, UPON COMPLETION OF ALL PROJECT CONSTRUCTION OR UPON NOTIFICATION OF THE ENGINEER, BE REMOVED AND THE AREA RESTORED TO ITS ORIGINAL LINES AND GRADES WITH TOPSOIL REPLACED, EXCEPT WHERE REQUESTED BY THE TOWNSHIP OR COUNTY TO PERMANENTLY REMAIN. DISTURBED AREAS OUTSIDE OF THE FINAL ROADWAY SHALL BE SEEDED AND MULCHED.
- 11. TURBINE SETBACKS ARE NOT IDENTIFIED ON THE CONSTRUCTION PLANS. IT SHALL BE THE RESPONSIBILITY OF THE OWNER AND CONTRACTOR TO ENSURE THAT ALL TURBINE SETBACKS MEET PROJECT REQUIREMENTS.
- 12. GEOTECHNICAL REPORTS WITH RECOMMENDATIONS HAVE BEEN PREPARED BY THE OWNER. ALL GRADING SHALL CONFORM TO THE GEOTECHNICAL ENGINEERING REPORT AND RECOMMENDATIONS.
- 13. FIELD SURVEY WETLAND INFORMATION HAS BEEN PROVIDED BY THE OWNER. ALL WETLAND DELINEATIONS AND PERMITTING SHALL BE THE RESPONSIBILITY OF OTHERS AND BE COMPLETED PRIOR TO CONSTRUCTION COMMENCING. THE OWNER AND GENERAL CONTRACTOR SHALL VERIFY THAT ALL WETLAND PERMITS HAVE BEEN SUBMITTED AND APPROVED PRIOR TO
- CONSTRUCTION COMMENCING. 14. CULTURAL RESOURCE REPORTS HAVE NOT BEEN PROVIDED BY THE OWNER. CULTURAL RESOURCE LOCATIONS ARE NOT SHOWN ON THE PLANS. INFORMATION WILL BE THE RESPONSIBILITY OF THE OWNER AND GENERAL CONTRACTOR. THE LOCATIONS OF CULTURAL RESOURCE SITES MAY BE CONFIDENTIAL AND PROTECTED BY STATE OR FEDERAL LAW. PUBLIC RELEASE OF
- SPECIFIC INFORMATION REGARDING THESE RESOURCES MAY BE RESTRICTED. 15. AN ENVIRONMENTAL ASSESSMENT HAS NOT BEEN PROVIDED. THE CONTRACTOR SHALL BE FAMILIAR WITH THE REPORT AND REVIEW ALL RECOMMENDATIONS.
- 16. ELECTRICAL INFORMATION SHOWN ON THE PLANS IS FOR REFERENCE ONLY. REFER TO ELECTRICAL CONSULTANT'S PLANS FOR
- SPECIFIC LOCATIONS AND CONSTRUCTION DETAILS FOR THE UNDERGROUND POWER COLLECTION SYSTEM AND SUBSTATION. 17. CRANE PATHS ARE SHOWN ON THE CONSTRUCTION PLANS. IF THE CONTRACTOR PROPOSES ALTERNATE CRANE PATHS, THEY SHALL ENSURE THAT WETLAND AND CULTURAL RESOURCE CORRIDORS ARE NOT DISTURBED. FINAL CRANE PATH ALIGNMENTS SHALL BE DETERMINED BY THE CONTRACTOR BASED ON FIELD CONDITIONS WITHIN THE WETLAND AND CULTURAL RESOURCE CORRIDORS, SPECIAL LANDOWNER AGREEMENTS AND THE PROJECT BOUNDARY.
- 18. EFFORTS SHALL BE MADE TO MINIMIZE SOIL DISTURBANCE. CONSTRUCTION DISTURBANCE MUST STAY WITHIN THE CLEARED CONSTRUCTION CORRIDOR. OWNER MUST APPROVE ANY DISTURBANCE BEYOND THE CLEARED CORRIDOR. THE TYPICAL CLEARED CORRIDOR IS 100 LF WIDTH FOR PROPOSED ACCESS ROADS, 100 LF FOR CRANE PATHS, AND 250 LF FOR TURBINES. DURING ERECTION OF THE ROTOR, TRUCKS AND/OR FORKLIFTS MAY EXTEND BEYOND THE LIMITS WITH APPROVAL. SEE DETAIL TS01 FOR TYPICAL ERECTION AREAS.
- 19. TRUCK TURNAROUNDS ARE NOT SHOWN ON THE PLANS. GENERAL CONTRACTOR TO COORDINATE AND ASSIST WITH TRUCK TURNAROUNDS WHERE NECESSARY.
- 20. AN ALTA SURVEY HAS NOT BEEN PROVIDED BY THE OWNER. CONTRACTOR AND OWNER ARE RESPONSIBLE FOR LOCATING ALL UTILITIES AND VERIFYING LOCATION OF CONSTRUCTION ACTIVITIES PRIOR TO COMMENCING WORK. ALL UTILITIES MAY NOT BE
- 21. OFF SITE TEMPORARY INTERSECTION IMPROVEMENTS ARE NOT SHOWN ON THE PLANS. CONTRACTOR SHALL BE RESPONSIBLE FOR LOCATIONS AND CONSTRUCTION REQUIREMENTS.
- 22. IMPACTS TO PUBLIC AND PRIVATE DRAIN TILE ARE EXPECTED. CONTRACTOR AND OWNER TO AGREE UPON DRAIN TILE REPAIR PRIOR TO REPAIRS.

## STORMWATER POLLUTION PREVENTION PLAN (SWPPP):

- 1. THE CONTRACTOR SHALL PROVIDE EROSION CONTROL MEASURES AS PLANNED AND SPECIFIED FOLLOWING BEST MANAGEMENT PRACTICES AS OUTLINED BY THE MINNESOTA DEPARTMENT OF HEALTH, THE IOWA DEPARTMENT OF NATURAL RESOURCES, AND BEING IN CONFORMANCE WITH THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) GENERAL STORMWATER
- 2. REFER TO THE STORMWATER POLLUTION PREVENTION PLAN (SWPPP) FOR THE FREEBORN WIND PROJECT, PREPARED BY WESTWOOD PROFESSIONAL SERVICES, FOR EROSION CONTROL AND RESTORATION SPECIFICATIONS, SEDIMENT AND EROSION CONTROL PROCEDURES, LOCATIONS OF BMPs, DETAILS, AND INSPECTION INFORMATION.
- 3. ALL PASTURES AND DRAINAGE SWALES DISTURBED DURING CONSTRUCTION ACTIVITIES AND NOT COVERED BY ROAD SURFACING MATERIALS, SHALL BE SEEDED IN ACCORDANCE WITH THE SWPP PLAN.
- TEMPORARY EROSION CONTROL SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. THE TEMPORARY EROSION CONTROL PLAN SHALL BE IN ACCORDANCE WITH THE MINNESOTA DEPARTMENT OF HEALTH, THE IOWA DEPARTMENT OF NATURAL RESOURCES. AND THE FREEBORN WIND PROJECT STORMWATER POLLUTION PREVENTION PLAN ON FILE.

| <u>ROJECT</u> | CONTACT | <b>INFOR</b> | <u>MATION:</u> |  |
|---------------|---------|--------------|----------------|--|
| :: E          |         |              | 0014544114     |  |

| TITLE                                     | COMPANY                        | NAME         | CONTACT NUMBER |
|-------------------------------------------|--------------------------------|--------------|----------------|
| OWNER                                     | XCEL ENERGY                    |              |                |
| PROJECT MANAGER & ENGINEER OF RECORD — MN | WESTWOOD PROFESSIONAL SERVICES | DANI NYGREN  | 952-906-7493   |
| ENGINEER OF RECORD - IA                   | WESTWOOD PROFESSIONAL SERVICES | ROB COPOULS  | 952-906-7470   |
| CONTRACTOR                                | WANZEK                         | CRAIG MOSENG | 701-893-3654   |

Westwood

Westwood Professional Services, Inc.

(952) 937-5150 12701 Whitewater Dr (952) 937-5822 Minnetonka, MN 55343 (888) 937-5150 westwoodps.com

| NO | REVISION             | ZONE DATE | BY  | СНК | ENG | NO REVISION | ZONE | DATE | BY | CHK | ENG REFERENCE DRAWINGS |                      |             | I hereby certify that this plan was prepared by                                       |
|----|----------------------|-----------|-----|-----|-----|-------------|------|------|----|-----|------------------------|----------------------|-------------|---------------------------------------------------------------------------------------|
| Α  | 90% CIVIL PLANS L083 | 04/17/20  | TDD | DJN | DJN |             |      |      |    |     |                        | DWG NO. MANUFACTURER | DESCRIPTION | me or under my direct supervision and that I am a duly licensed PROFESSIONAL ENGINEER |
| 0  | IFC CIVIL PLANS L083 | 05/04/20  | TDD | DJN | DJN |             |      |      |    |     |                        |                      |             | under the laws of the State of Minnesota.                                             |
|    |                      |           |     |     |     |             |      |      |    |     |                        |                      |             | Daville J. My                                                                         |
|    |                      |           |     |     |     |             |      |      |    |     |                        |                      |             | Signature                                                                             |
|    |                      |           |     |     |     |             |      |      |    |     |                        |                      |             | Danielle J Nygren Printed Name                                                        |
|    |                      |           |     |     |     |             |      |      |    |     |                        |                      |             | Date: 05/04/20 License No. 55542                                                      |
|    |                      |           |     |     |     |             |      |      |    |     |                        |                      |             |                                                                                       |

CROSSING (FILL

MATERIAL):

THIS MAP/DOCUMENT IS A TOOL **(1) Xcel** Energy <sup>®</sup> TO ASSIST EMPLOYEES IN THE UNIT 0 PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS CIVIL ACCESS ROADS NORTHERN STATES POWER COMPANY PROVIDED FOR BY USING SAFETY PRACTICES, FREEBORN WIND FARM PROCEDURES, AND EQUIPMENT AS DESCRIBED IN THE SAFETY Freeborn County, MN and Worth County, IA TRAINING PROGRAMS AND **CONSTRUCTION NOTES** DWN: TDD DATE: CHK: DATE: MANUALS. ENG: DJN CHK: DATE: **ENERGY SUPPLY** NH-276086-7-1 PM: DJN DATE: PROJ. NO: 22586 **ENGINEERING & CONSTRUCTION** APVD: DATE: SCALE: NONE

**CEMENT STABILIZATION - PROCEDURE** 

THE SPECIFICATIONS BELOW ARE GENERAL RECOMMENDATIONS/GUIDELINES FOR CEMENT STABILIZATION OF SUBGRADES FOR THE PROJECT. ACTUAL FIELD CONDITIONS MAY ALTER APPLICATION RATE. CONSULT WESTWOOD FOR FURTHER RECOMMENDATIONS.

- 1. STRIP THE TOP  $4\pm$  INCHES OF TOPSOIL (THROUGH THE ROOT ZONE) FROM THE AREA TO BE STABILIZED. ROOTS SMALLER THAN 1/4" DIAMETER ARE CONSIDERED INSIGNIFICANT.
- 2. PERFORM A PROCTOR (ASTM D 698) TEST TO DETERMINE THE OPTIMUM MOISTURE CONTENT IF THE MATERIAL TO BE STABILIZED DOES NOT MATCH A PREVIOUSLY PERFORMED PROCTOR. PREVIOUSLY PERFORMED PROCTOR INCLUDES PROCTORS FROM THE GEOTECH REPORT.
- 3. DETERMINE THE IN-SITU MOISTURE CONTENT USING A NUCLEAR DENSITY GAUGE (OR EQUIVALENT MOISTURE CONTENT TEST) DAILY, PRIOR TO INCORPORATION OF THE CEMENT. PROVIDE ADDITIONAL MOISTURE CONTENT TESTING AS NEEDED BASED ON WEATHER CONDITIONS.
- 3.1. THE CONTRACTOR WILL BE ADVISED OF IN-SITU MOISTURE CONTENT, AND MOISTURE ADJUSTMENTS SHOULD BE MADE IF IN-SITU MOISTURE IS LESS THAN OPTIMUM MOISTURE CONTENT AS DETERMINED BY THE PROCTOR (ASTM D 698).
- 4. SOIL AND CEMENT BLENDING:
- 4.1. COMPLETELY BLEND SUBGRADE SOIL EVENLY ACROSS THE SECTION WITH THE APPROPRIATE AMOUNT OF CEMENT BY WEIGHT. FIELD RESULTS FROM TEST STRIPS WILL DICTATE THE CEMENT APPLICATION RATE.
- 4.2. IN AREAS OF HIGH MOISTURE OR POOR SOILS, THE CONTRACTOR MAY INCREASE THE PERCENT OF CEMENT IN ORDER TO MEET THE MINIMUM SUBGRADE STRENGTH REQUIREMENTS.
- 4.3. THE USE OF A RECLAIMER IS AN ADEQUATE BLENDING METHOD. DISKING IS NOT AN ADEQUATE
- 4.4. A STABILIZATION DEPTH OF 12" WAS USED FOR DESIGN PURPOSES. STABILIZATION DEPTH MAY NEED TO INCREASE TO 16" IN AREAS OF EXTREME MOISTURE OR POOR SOILS IN ORDER TO MEET THE STRENGTH AND PROOF ROLL REQUIREMENTS.
- 4.5. THE AIR TEMPERATURE SHALL BE ABOVE 40 DEGREES (F) DURING THE CEMENT STABILIZATION PROCESS. MIXING CEMENT INTO FROZEN GROUND IS NOT ACCEPTABLE. NO SOIL AND CEMENT BLENDING SHOULD BE PERFORMED IF TEMPERATURES ARE BELOW 40 DEGREES FOR THE NEXT THREE DAYS OR EXPECTED TO FALL BELOW FREEZING WITHIN THE NEXT SEVEN DAYS.
- 4.6. CEMENT STABILIZATION SHALL NOT BE PERFORMED WHEN RAINFALL WILL DISTURB CHEMICAL SPREADING OR COMPROMISE STABILITY OF THE TREATED MATERIAL.
- 5. COMPACTION:
- 5.1. COMPACTION SHOULD BEGIN AS SOON AS POSSIBLE, AND GENERALLY COMPLETED WITHIN 2 HOURS OF
- 5.2. A ROLLING PATTERN WILL BE ESTABLISHED USING A NUCLEAR DENSITY GAUGE DURING COMPACTION.
  5.2.1. COMPACTION WILL BE PERFORMED UNTIL THE STABILIZED MATERIAL REACHES A MINIMUM OF 95% OF MAXIMUM DRY DENSITY (ASTM D698).
- 5.2.2. THE NUMBER OF PASSES AND EQUIPMENT USED TO REACH A MINIMUM OF 95% OF MAXIMUM DRY DENSITY IS CONSIDERED THE ROLLING PATTERN.
- 5.2.3. DENSITY TESTS SHALL BE TAKEN AT THE RATE OF 1 TEST PER 500 LF IN EACH PASS OF THE RECLAIMER TO CONFIRM THE DENSITY MEETS THE MINIMUM REQUIREMENT. ONCE A CONSISTENT ROLLING PATTERN HAS BEEN CONFIRMED IT IS RECOMMENDED THAT TESTING CONTINUE AT 1 TEST PER 1,000 LF IN EACH PASS OF THE RECLAIMER.
- 5.2.4. A NEW ROLLING PATTERN MAY NEED TO BE ESTABLISHED IF THE PERFORMANCE REQUIREMENTS ARE NOT BEING MET. THIS MAY BE DUE TO CHANGES IN THE MOISTURE CONTENT, THE SOIL TYPE, OR THE CEMENT RATE
- 5.3. COMPACTION IS TYPICALLY ACHIEVED BY MULTIPLE PASSES OF A PAD FOOT ROLLER. A SMOOTH DRUM OR RUBBER TIRE ROLLERS ARE THEN USED TO FINISH ROLLING. FINAL ROLLING WILL REMOVE HIGH AND LOW POINTS AND SET THE FINAL PROFILE.
- 6. THE STABILIZED MATERIAL SHALL BE CONTINUOUSLY WET CURED FOR A MINIMUM OF 24 HOURS (WET CURED IS IDENTIFIED VISUALLY AS DAMP SURFACE). THE STABILIZED MATERIAL SHALL BE PROTECTED FROM FREEZING FOR 7 DAYS.
- 7. SUBRGRAGE DCP TESTING AND ACCEPTANCE:
- 7.1. PERFORM SUBGRADE STRENGTH TESTING BY DYNAMIC CONE PENETROMETER (DCP) PER ASTM D 6951-18
  NO SOONER THAN 24 HOURS AFTER FINAL COMPACTION.
- 7.2. DCP TESTING FREQUENCY SHALL BE WITH A RANDOM SPACING AND A MINIMUM OF 1 TEST PER 500 LF IN EACH PASS OF THE RECLAIMER. A MINIMUM OF 3 TESTS PER ROAD IS REQUIRED.
- 7.3. THE CBR OF THE STABILIZED SUBGRADE SHOULD BE CALCULATED IN 6" INCREMENTS THROUGH THE ENTIRE DEPTH OF THE STABILIZED LAYER.
- 7.4. THE MINIMUM REQUIRED CBR PRIOR TO PROOF-ROLLING IS PROVIDED IN TABLE 3 BELOW:

| TABLE 3: FINAL CEMENT STABILIZED CBR/DCP REQUIREMENTS TABLE |                         |                               |                           |  |  |  |  |  |  |  |
|-------------------------------------------------------------|-------------------------|-------------------------------|---------------------------|--|--|--|--|--|--|--|
| TIME ELAPSED BETWEEN FINAL COMPACTION AND DCP TEST          | REQUIRED<br>MINIMUM CBR | MINIMUM DCP<br>(BLOWS PER 6") | BEARING<br>CAPACITY (PSF) |  |  |  |  |  |  |  |
| 24 - 48 HOURS                                               | 20                      | 14                            | 14,700                    |  |  |  |  |  |  |  |
| 3 - 7 DAYS                                                  | 25                      | 17                            | 17,500                    |  |  |  |  |  |  |  |
| 28 DAYS                                                     | 50                      | 32                            | 31,400                    |  |  |  |  |  |  |  |

NOTE: UNDRAINED SHEAR STRENGTH WAS CALCULATED USING THE BLACK (1961) EQUATION. BEARING CAPACITY WAS CALCULATED USING THE VESIC EQUATION MODIFIED FOR TWO LAYERS (12" CEMENT STABILIZED SUBGRADE OVER A NATURAL SUBGRADE WITH A CBR OF 2.5 AMD 4" OF AGGREGATE)

- 7.5. ONCE THE MINIMUM REQUIRED CBR IS ACHIEVED AT ANY CORRESPONDING TIME PERIOD, THE SUBGRADE IS CONSIDERED ADEQUATE AND THE CONTRACTOR MAY PROCEED WITH PROOF—ROLL TESTING. FUTURE DCP TESTING ON THAT SEGMENT OF SUBGRADE IS NOT REQUIRED.
- 7.6. IF TESTING DOES NOT INDICATE A CBR OF 25 WITHIN 7 DAYS, ADDITIONAL GRAVEL SURFACING AND/OR THE ADDITION OF GEOTEXTILE FABRIC MAY BE REQUIRED. SEE TABLE 4.
- 8. SUBGRADE PROOF—ROLL TESTING AND ACCEPTANCE:
- 8.1. ONCE THE REQUIRED DCP VALUE HAS BEEN OBTAINED BUT PRIOR TO PLACING AGGREGATE, THE SUBGRADE SHALL BE PROOF—ROLLED. REFER TO THE PROJECT TESTING REQUIREMENTS FOR
- PROOF—ROLL DEFINITION.

  8.2. PROOF—ROLLING SHOULD BE PERFORMED WITH ONE PASS DOWN THE CENTER AND NOT BE PERFORMED WITHIN 12 INCHES OF THE EDGE OF THE STABILIZED SECTION.
- 8.3. IF PROOF—ROLLING FAILS, RE—STABILIZATION MAY BE REQUIRED AND A NEW ROLLING PATTERN OR ADDITIONAL CEMENT MAY BE REQUIRED FOR FUTURE SUBGRADE STABILIZATION AREAS. CONTACT THE ENGINEER FOR RECOMMENDATIONS.
- 9. AGGREGATE PLACEMENT:
- 9.1. SURFACE AGGREGATE SHALL BE PLACED OVER THE STABILIZED SUBGRADE FOLLOWING PASSING DCP AND PROOF—ROLL TESTS AND WITHIN 30 DAYS OF STABILIZATION.
- 9.2. THE AGGREGATE SURFACING IS INTENDED TO PROTECT THE SUBGRADE FROM WATER BEING PUMPED INTO THE SUBGRADE AND TO PROVIDE A TRACTION COURSE. WESTWOOD RECOMMENDS A MINIMUM OF 4 INCHES OF AGGREGATE INITIALLY PLACED OVER STABILIZED SUBGRADE. MAINTENANCE IS REQUIRED THROUGHOUT CONSTRUCTION AND MAY REQUIRE THE PLACEMENT OF ADDITIONAL AGGREGATE.
- 9.3. REFER TO THE TESTING SCHEDULE ON SHEET NH-276086-7-1 FOR AGGREGATE PLACEMENT CRITERIA.

## <u>CEMENT STABILIZATION - DESIGN BASIS</u>

- 1. DURING INITIAL CONSTRUCTION, CONTRACTOR SHALL CONSTRUCT MINIMUM 300 LF TEST STRIPS CONTAINING 5%, 6%, AND 7% CEMENT IN ACCORDANCE WITH CEMENT STABILIZATION PROCEDURES.
- 2. SUBGRADE DCP TESTING AND ACCEPTANCE (SEE TABLE 3):
- 2.1. PERFORM DCP TESTING AT 24 AND 48 HOURS AFTER FINAL COMPACTION.
- 2.2. PERFORM SUBSEQUENT DCP TESTS AT 7 DAYS AFTER FINAL COMPACTION AS VERIFICATION OF STRENGTH CURVE.
- 2.3. A MINIMUM OF 3 TESTS PER TEST SECTION PER TIMEFRAME IS REQUIRED. TESTS SHALL BE TAKEN AT THE CENTERLINE AND 2' FROM EACH SHOULDER.
- 2.4. RECORD DCP TEST RESULTS EVERY 6 INCHES TO TOTAL DEPTH OF 12 INCHES.
- 2.5. IF THE MINIMUM DCP REQUIREMENTS ARE NOT OBTAINED, CONTACT ENGINEER FOR RECOMMENDATIONS MOVING FORWARD.

## **CEMENT STABILIZATION - REPAIR**

SPECIFICATION BELOW ARE FOR THE REPAIR OF CEMENT STABILIZED SUBGRADE DAMAGED BY EQUIPMENT SUCH AS CRANES OR TRENCHING:

- 1. REMOVE FULL DEPTH OF CEMENT-TREATED MATERIAL.
- 2. PLACE AND COMPACT NATIVE MATERIAL TO 95% OF THE MAXIMUM DRY DENSITY. THE COMPACTED SUBGRADE ELEVATION SHALL BE 6 INCHES BELOW TOP OF FINAL GRADE.
- 3. PLACE MIRAFI HP270 ON SUBGRADE, IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
- 4. PLACE AND COMPACT 6 INCHES OF AGGREGATE BASE FOR CONSTRUCTION TRAFFIC. NOTE LOCATION OF REPAIR ON RED-LINE DRAWINGS.

| TABLE 4: ALTERNATIVE ACCESS ROAD SECTIONS (AFTER 7 DAYS) |                      |                       |  |  |  |  |  |  |  |
|----------------------------------------------------------|----------------------|-----------------------|--|--|--|--|--|--|--|
| DCP (BLOWS/6")                                           | 7 DAY CBR (FROM DCP) | GRAVEL THICKNESS (IN) |  |  |  |  |  |  |  |
| 4                                                        | 5-10                 | 12*                   |  |  |  |  |  |  |  |
| 8                                                        | 10-15                | 8*                    |  |  |  |  |  |  |  |
| 11                                                       | 15-20                | 6                     |  |  |  |  |  |  |  |
| 14                                                       | 20-25                | 5                     |  |  |  |  |  |  |  |
| 17                                                       | >25                  | 4                     |  |  |  |  |  |  |  |

\*ALTERNATE SECTION IS 6" GRAVEL OVER MIRAFI HP270 OR APPROVED EQUAL.

| LOCATION                               | TEST                  |                     | FREQUENCY                                                                                                                        |  |  |  |  |  |  |
|----------------------------------------|-----------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| COMPACTED SUBGRADE (CEMENT STABILIZED) | PROCTOR               |                     | MINIMUM 1 PER MAJOR SOIL TYPE (PREVIOUS PROCTORS MAY BE USED)                                                                    |  |  |  |  |  |  |
|                                        | MOISTURE DENSITY TEST | (NUCLEAR DENSITY)-  |                                                                                                                                  |  |  |  |  |  |  |
|                                        |                       | BEFORE ADDING CEMEN | MIN 1 PER ROAD (DAILY). ADJUST AS NEEDED BASED ON FIELD CONDITIONS.                                                              |  |  |  |  |  |  |
|                                        |                       | DURING COMPACTION   | 1 PER 500 LF IN EACH PASS OF THE RECLAIMER UNTIL CONSISTENT, THEN 1 PER 1000 LF IN EACH PASS OF THE RECLAIMER, A MIN. 3 PER ROAD |  |  |  |  |  |  |
|                                        | DCP TEST              | ,                   | 1 PER 500 LF IN EACH PASS OF THE RECLAIMER, A MIN. 3 PER ROAD                                                                    |  |  |  |  |  |  |
|                                        | PROOF-ROLL (AFTER PA  | SSING DCP TESTS)    | ENTIRE LENGTH                                                                                                                    |  |  |  |  |  |  |



THIS MAP/DOCUMENT IS A TOOL

TO ASSIST EMPLOYEES IN THE

PERFORMANCE OF THEIR JOBS

YOUR PERSONAL SAFETY IS

PROVIDED FOR BY USING SAFETY PRACTICES,

PROCEDURES, AND EQUIPMENT AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND

MANUALS.

**ENERGY SUPPLY** 

**ENGINEERING & CONSTRUCTION** 

**(1)** Xcel Energy®

NORTHERN STATES POWER COMPANY

FREEBORN WIND FARM

CHK:

CHK:

DATE:

DATE:

PROJ. NO: 22586

SCALE: NONE

DWN: TDD DATE:

DATE:

DATE:

ENG: DJN

PM: DJN

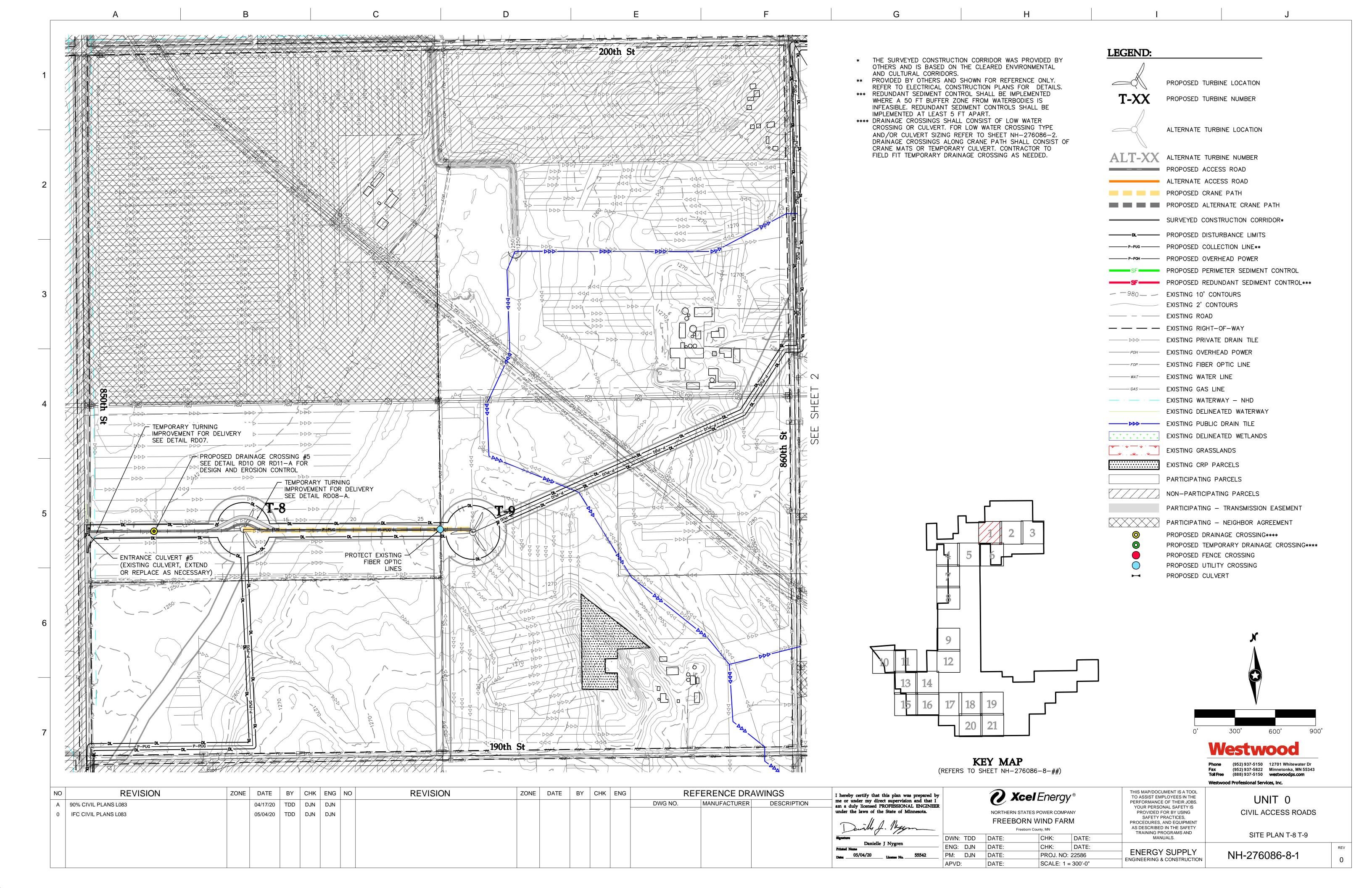
APVD:

 Phone
 (952) 937-5150
 12701 Whitewater Dr

 Fax
 (952) 937-5822
 Minnetonka, MN 55343

 Toll Free
 (888) 937-5150
 westwoodps.com

Westwood Professional Services, Inc.


UNIT 0

NH-276086-7-2

| NO  | REVISION             | ZONE | DATE     | BY  | СНК | ENG NO | REVISION | ZONE | DATE | BY CH | K ENG | REFERENCE DRAWINGS |              | I hereby certify that this plan was prepared b |                                                                                       |   |
|-----|----------------------|------|----------|-----|-----|--------|----------|------|------|-------|-------|--------------------|--------------|------------------------------------------------|---------------------------------------------------------------------------------------|---|
| Α : | 90% CIVIL PLANS L083 |      | 04/17/20 | TDD | DJN | DJN    |          |      |      |       |       | DWG NO.            | MANUFACTURER | DESCRIPTION                                    | me or under my direct supervision and that I am a duly licensed PROFESSIONAL ENGINEER |   |
| 0   | IFC CIVIL PLANS L083 |      | 05/04/20 | TDD | DJN | DJN    |          |      |      |       |       |                    |              |                                                | under the laws of the State of Minnesota.                                             |   |
|     |                      |      |          |     |     |        |          |      |      |       |       |                    |              |                                                | Daville J. Mygn                                                                       |   |
|     |                      |      |          |     |     |        |          |      |      |       |       |                    |              |                                                | Staneture  Danielle J Nygren                                                          | D |
|     |                      |      |          |     |     |        |          |      |      |       |       |                    |              |                                                | Printed Name                                                                          | E |
|     |                      |      |          |     |     |        |          |      |      |       |       |                    |              |                                                | Dete: 05/04/20 License No. 55542                                                      | Р |
|     |                      |      |          |     |     |        |          |      |      |       |       |                    |              |                                                |                                                                                       | Α |

CIVIL ACCESS ROADS

CONSTRUCTION NOTES

